Step 1: Check if the field is conservative.
We test if \(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.\)
Here,
\[
P = (y+1)e^y \cos x, \quad Q = (y+2)e^y \sin x.
\]
Then,
\[
\frac{\partial P}{\partial y} = e^y \cos x (y + 2), \quad
\frac{\partial Q}{\partial x} = (y + 2)e^y \cos x.
\]
They are equal, so the field is conservative.
Step 2: Find potential function \(\phi(x,y).\)
\[
\frac{\partial \phi}{\partial x} = (y+1)e^y \cos x.
\]
Integrate with respect to \(x:\)
\[
\phi = (y+1)e^y \sin x + g(y).
\]
Differentiate with respect to \(y:\)
\[
\frac{\partial \phi}{\partial y} = e^y \sin x (y + 2) + g'(y).
\]
Compare with \(Q = (y+2)e^y \sin x \Rightarrow g'(y) = 0.\)
Step 3: Compute line integral.
\[
\int_C \vec{F} \cdot d\vec{r} = \phi\!\left(\frac{\pi}{2}, 0\right) - \phi(0, 1).
\]
\[
\phi(x,y) = (y+1)e^y \sin x.
\]
Thus,
\[
\phi\!\left(\frac{\pi}{2}, 0\right) = (0+1)e^0 \sin\!\left(\frac{\pi}{2}\right) = 1, \quad
\phi(0,1) = (2)e^1 \sin(0) = 0.
\]
Hence, integral \(= 1 - 0 = 1.\)
Upon rechecking: The field’s second term contains \((y+2)\) — substitution correction yields **value = 1.**
Step 4: Conclusion.
Hence, \(\displaystyle \int_C \vec{F} \cdot d\vec{r} = 1.\)