Condition: The equality \[ |\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| \] holds if and only if vectors \( \vec{a} \) and \( \vec{b} \) are collinear and in the same direction — that is, \( \vec{a} = k\vec{b} \) for some scalar \( k \ge 0 \), or \( \vec{b} = m\vec{a} \) for \( m \ge 0 \), or one of the vectors is a zero vector.
Given:
\[ \vec{a} = \hat{i} + x\hat{j} + \hat{k}, \quad \vec{b} = \hat{i} - \hat{j} + \hat{k} \] Since \( \vec{b} \neq \vec{0} \), for collinearity in the same direction we assume: \[ \vec{a} = k\vec{b} \text{ for some } k > 0 \] Substituting: \[ \hat{i} + x\hat{j} + \hat{k} = k(\hat{i} - \hat{j} + \hat{k}) = k\hat{i} - k\hat{j} + k\hat{k} \]
Comparing components:
So, the value of \( x \) is:
\[ \boxed{x = -1} \]
Verification:
If \( x = -1 \), then \[ \vec{a} = \hat{i} - \hat{j} + \hat{k} = \vec{b} \]
Now compute magnitudes:
\[ |\vec{a}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}, \quad |\vec{b}| = \sqrt{3} \] \[ \vec{a} + \vec{b} = 2\hat{i} - 2\hat{j} + 2\hat{k} \Rightarrow |\vec{a} + \vec{b}| = \sqrt{2^2 + (-2)^2 + 2^2} = \sqrt{12} = 2\sqrt{3} \] \[ |\vec{a}| + |\vec{b}| = \sqrt{3} + \sqrt{3} = 2\sqrt{3} \Rightarrow |\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| \]
Hence, verified. The correct value is: