Step 1: Recall the formula for cross product magnitudes
The magnitude of the cross product is: \[ |\vec{a} \times \hat{i}| = |\vec{a}||\hat{i}|\sin\theta. \]
Step 2: Evaluate each term
For \( \vec{a} \times \hat{i} \), \( \vec{a} \times \hat{j} \), and \( \vec{a} \times \hat{k} \), the contributions along two directions add up, giving: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2a^2. \]
Step 3: Verify the options
The correct result is \( 2a^2 \), matching option (B).
The equation of a closed curve in two-dimensional polar coordinates is given by \( r = \frac{2}{\sqrt{\pi}} (1 - \sin \theta) \). The area enclosed by the curve is ___________ (answer in integer).
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: