Calculate \((\vec{a} + \vec{b}) \times \vec{c}\):
\[ \vec{a} + \vec{b} = (3 + 5) \hat{i} + (2 - 1) \hat{j} + (1 + 3) \hat{k} = 8 \hat{i} + \hat{j} + 4 \hat{k}. \]
Then,
\[ (\vec{a} + \vec{b}) \times \vec{c} = 2 (\vec{a} \times \vec{b}) + 24 \hat{j} - 6 \hat{k}. \]
Solving for \(\vec{c}\) using the vector equation and substituting values, we get:
\[ |\vec{c}|^2 = 25 + 9 + 4 = 38. \]
Therefore, the answer is: 38.
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)