Calculate \((\vec{a} + \vec{b}) \times \vec{c}\):
\[ \vec{a} + \vec{b} = (3 + 5) \hat{i} + (2 - 1) \hat{j} + (1 + 3) \hat{k} = 8 \hat{i} + \hat{j} + 4 \hat{k}. \]
Then,
\[ (\vec{a} + \vec{b}) \times \vec{c} = 2 (\vec{a} \times \vec{b}) + 24 \hat{j} - 6 \hat{k}. \]
Solving for \(\vec{c}\) using the vector equation and substituting values, we get:
\[ |\vec{c}|^2 = 25 + 9 + 4 = 38. \]
Therefore, the answer is: 38.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: