From the given equation:
\[ \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k}. \]
Expanding using vector algebra:
\[ \vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k}. \]
It is given:
\[ \vec{a} \times \vec{b} = \hat{i} + 8\hat{j} + 13\hat{k}. \]
So:
\[ \vec{a} \times \vec{c} + \vec{b} \times \vec{c} = \vec{0}. \]
Expanding further:
\[ \vec{b} \times \vec{c} = -\vec{a} \times \vec{c}. \]
Using \( \vec{a} \cdot \vec{c} = 13 \), compute:
\[ \vec{b} \cdot \vec{c} = -\left[\vec{a} \cdot (\hat{i} + 8\hat{j} + 13\hat{k})\right] = -22. \]
From the determinant of \( \vec{b} \cdot \vec{c} \):
\[ 24 - \vec{b} \cdot \vec{c} = 46. \]
We are given two vectors \( \vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k} \), \( \vec{b} = 3\hat{i} + 4\hat{j} - 5\hat{k} \), and a vector \( \vec{c} \). We are provided with a vector equation \( \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k} \) and a scalar condition \( \vec{a} \cdot \vec{c} = 13 \). The goal is to find the value of the expression \( (24 - \vec{b} \cdot \vec{c}) \).
The solution involves the use of fundamental properties of vector algebra:
1. Distributive Property of Vector Cross Product: The cross product is distributive over vector addition.
\[ \vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w} \] \[ (\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w} \]2. Vector Triple Product (BAC-CAB Rule): The expansion of a triple cross product is given by:
\[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w} \]3. Standard methods for calculating the scalar (dot) and vector (cross) products of vectors in component form.
Step 1: Simplify the given vector equation.
We start with the equation \( \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k} \).
Using the distributive property on the first term:
\[ (\vec{a} \times \vec{b} + \vec{a} \times \vec{c}) + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k} \]Group the terms involving \( \vec{c} \):
\[ \vec{a} \times \vec{b} + (\vec{a} \times \vec{c} + \vec{b} \times \vec{c}) = \hat{i} + 8\hat{j} + 13\hat{k} \]Using the distributive property again:
\[ \vec{a} \times \vec{b} + (\vec{a} + \vec{b}) \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k} \]Isolate the term containing \( \vec{c} \):
\[ (\vec{a} + \vec{b}) \times \vec{c} = (\hat{i} + 8\hat{j} + 13\hat{k}) - (\vec{a} \times \vec{b}) \]Step 2: Calculate the constant vectors \( \vec{a} \times \vec{b} \) and \( \vec{a} + \vec{b} \).
\[ \vec{a} + \vec{b} = (2+3)\hat{i} + (-3+4)\hat{j} + (4-5)\hat{k} = 5\hat{i} + \hat{j} - \hat{k} \] \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 4 \\ 3 & 4 & -5 \end{vmatrix} = \hat{i}(15 - 16) - \hat{j}(-10 - 12) + \hat{k}(8 - (-9)) = -\hat{i} + 22\hat{j} + 17\hat{k} \]Step 3: Substitute these values into the simplified equation from Step 1.
Let \( \vec{V} = (\hat{i} + 8\hat{j} + 13\hat{k}) - (\vec{a} \times \vec{b}) \).
\[ \vec{V} = (\hat{i} + 8\hat{j} + 13\hat{k}) - (-\hat{i} + 22\hat{j} + 17\hat{k}) = 2\hat{i} - 14\hat{j} - 4\hat{k} \]The simplified equation becomes: \( (\vec{a} + \vec{b}) \times \vec{c} = \vec{V} \).
Step 4: Use the vector triple product to find an expression for \( \vec{c} \).
Take the cross product of the equation with \( \vec{a} \):
\[ \vec{a} \times ((\vec{a} + \vec{b}) \times \vec{c}) = \vec{a} \times \vec{V} \]Applying the BAC-CAB rule to the left side:
\[ (\vec{a} \cdot \vec{c})(\vec{a} + \vec{b}) - (\vec{a} \cdot (\vec{a} + \vec{b}))\vec{c} = \vec{a} \times \vec{V} \]Step 5: Calculate the necessary scalar and vector products.
We are given \( \vec{a} \cdot \vec{c} = 13 \).
Calculate \( \vec{a} \cdot (\vec{a} + \vec{b}) \):
\[ \vec{a} \cdot (\vec{a} + \vec{b}) = (2\hat{i} - 3\hat{j} + 4\hat{k}) \cdot (5\hat{i} + \hat{j} - \hat{k}) = (2)(5) + (-3)(1) + (4)(-1) = 10 - 3 - 4 = 3 \]Calculate \( \vec{a} \times \vec{V} \):
\[ \vec{a} \times \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 4 \\ 2 & -14 & -4 \end{vmatrix} = \hat{i}(12 - (-56)) - \hat{j}(-8 - 8) + \hat{k}(-28 - (-6)) = 68\hat{i} + 16\hat{j} - 22\hat{k} \]Step 6: Substitute these values back into the equation from Step 4 to solve for \( \vec{c} \).
\[ (13)(\vec{a} + \vec{b}) - (3)\vec{c} = \vec{a} \times \vec{V} \] \[ 13(5\hat{i} + \hat{j} - \hat{k}) - 3\vec{c} = 68\hat{i} + 16\hat{j} - 22\hat{k} \] \[ 65\hat{i} + 13\hat{j} - 13\hat{k} - 3\vec{c} = 68\hat{i} + 16\hat{j} - 22\hat{k} \]Rearranging to solve for \( \vec{c} \):
\[ -3\vec{c} = (68 - 65)\hat{i} + (16 - 13)\hat{j} + (-22 + 13)\hat{k} \] \[ -3\vec{c} = 3\hat{i} + 3\hat{j} - 9\hat{k} \] \[ \vec{c} = -\hat{i} - \hat{j} + 3\hat{k} \]Step 7: Calculate the scalar product \( \vec{b} \cdot \vec{c} \).
We have \( \vec{b} = 3\hat{i} + 4\hat{j} - 5\hat{k} \) and \( \vec{c} = -\hat{i} - \hat{j} + 3\hat{k} \).
\[ \vec{b} \cdot \vec{c} = (3)(-1) + (4)(-1) + (-5)(3) \] \[ \vec{b} \cdot \vec{c} = -3 - 4 - 15 = -22 \]Step 8: Compute the final required value.
\[ 24 - (\vec{b} \cdot \vec{c}) = 24 - (-22) = 24 + 22 = 46 \]The value of \( (24 - \vec{b} \cdot \vec{c}) \) is 46.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
