Question:

Let \( \vec{A} = 2\ell - \mathbf{j} + \mathbf{k} \) and \( \vec{B} = \ell + \mathbf{f} \), where \( \ell, \mathbf{f}, \) and \( \mathbf{k} \) are unit vectors. The projection of \( \vec{B} \) on \( \vec{A} \) is:

Show Hint

When calculating projections, always start with the dot product and the magnitudes of the vectors involved. Ensure you understand the direction and magnitude of the resultant projection.
Updated On: May 1, 2025
  • \( \frac{1}{\sqrt{12}} \)
  • \( \frac{1}{\sqrt{6}} \)
  • \( \sqrt{6} \)
  • \( \frac{1}{\sqrt{2}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The projection of vector \( \vec{B} \) on vector \( \vec{A} \) is given by the formula: \[ {Proj}_{\vec{A}} \vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}|} \hat{A} \] where \( \hat{A} \) is the unit vector in the direction of \( \vec{A} \), and \( \vec{A} \cdot \vec{B} \) is the dot product of \( \vec{A} \) and \( \vec{B} \).
Let’s first compute the dot product \( \vec{A} \cdot \vec{B} \). We have: \[ \vec{A} = 2\ell - \mathbf{j} + \mathbf{k}, \quad \vec{B} = \ell + \mathbf{f} \] Since \( \ell, \mathbf{f}, \) and \( \mathbf{k} \) are unit vectors, the dot product is: \[ \vec{A} \cdot \vec{B} = (2\ell) \cdot \ell + (-\mathbf{j}) \cdot \mathbf{f} + \mathbf{k} \cdot \mathbf{f} \] Using the fact that the unit vectors are orthogonal (i.e., \( \ell \cdot \mathbf{f} = 0 \), \( \mathbf{j} \cdot \mathbf{k} = 0 \), etc.), we get: \[ \vec{A} \cdot \vec{B} = 2 \times 1 + 0 + 0 = 2 \] Now, we compute the magnitude of \( \vec{A} \): \[ |\vec{A}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] Thus, the projection of \( \vec{B} \) on \( \vec{A} \) is: \[ {Proj}_{\vec{A}} \vec{B} = \frac{2}{\sqrt{6}} \hat{A} \] Therefore, the magnitude of the projection is: \[ \frac{2}{\sqrt{6}} \] which simplifies to \( \frac{1}{\sqrt{6}} \) when considering the unit vector in the direction of \( \vec{A} \).
Thus, the correct option is \( \frac{1}{\sqrt{6}} \), which corresponds to option (B).
Was this answer helpful?
0
0

Questions Asked in GATE PE exam

View More Questions