Step 1: Solve the differential equation.
The given second-order linear differential equation is:
\[
4 \frac{d^2 y}{dx^2} + 16 \frac{dy}{dx} + 25y = 0.
\]
Dividing the equation by 4 to simplify:
\[
\frac{d^2 y}{dx^2} + 4 \frac{dy}{dx} + \frac{25}{4}y = 0.
\]
This is a homogeneous linear differential equation with constant coefficients. The characteristic equation is:
\[
r^2 + 4r + \frac{25}{4} = 0.
\]
The discriminant of this quadratic is:
\[
\Delta = 4^2 - 4 \cdot 1 \cdot \frac{25}{4} = 16 - 25 = -9.
\]
Thus, the roots are complex:
\[
r = \frac{-4 \pm \sqrt{-9}}{2} = -2 \pm \frac{3i}{2}.
\]
Therefore, the general solution is:
\[
\varphi(x) = e^{-2x} \left( C_1 \cos\left( \frac{3x}{2} \right) + C_2 \sin\left( \frac{3x}{2} \right) \right).
\]
Step 2: Apply initial conditions.
Using \( \varphi(0) = 1 \), we get:
\[
1 = C_1 e^0 \cos(0) + C_2 e^0 \sin(0) \implies C_1 = 1.
\]
Next, using \( \varphi'(0) = -\frac{1}{2} \), we differentiate \( \varphi(x) \) to get:
\[
\varphi'(x) = e^{-2x} \left( -2 \cos\left( \frac{3x}{2} \right) + C_2 \cdot \frac{3}{2} \cos\left( \frac{3x}{2} \right) - C_2 \cdot \frac{3}{2} \sin\left( \frac{3x}{2} \right) \right).
\]
At \( x = 0 \), this becomes:
\[
-\frac{1}{2} = -2C_1 \implies C_2 = -\frac{1}{2}.
\]
Thus, the solution is:
\[
\varphi(x) = e^{-2x} \left( \cos\left( \frac{3x}{2} \right) - \frac{1}{2} \sin\left( \frac{3x}{2} \right) \right).
\]
Step 3: Evaluate the limit.
Now, we evaluate the limit \( \lim_{x \to \infty} e^{2x} \varphi(x) \):
\[
\lim_{x \to \infty} e^{2x} e^{-2x} \left( \cos\left( \frac{3x}{2} \right) - \frac{1}{2} \sin\left( \frac{3x}{2} \right) \right) = \lim_{x \to \infty} \left( \cos\left( \frac{3x}{2} \right) - \frac{1}{2} \sin\left( \frac{3x}{2} \right) \right) = 0.
\]
Final Answer:
\[
\boxed{0}.
\]