Step 1: Rewrite the Differential Equation.
We are given the equation:
\[
x \frac{dy}{dx} = (y - 1)(y - 3)
\]
Rewriting this, we separate the variables:
\[
\frac{dy}{(y - 1)(y - 3)} = \frac{dx}{x}
\]
Step 2: Integrate both sides.
To integrate the left-hand side, use partial fractions:
\[
\frac{1}{(y - 1)(y - 3)} = \frac{A}{y - 1} + \frac{B}{y - 3}
\]
Solving for \( A \) and \( B \), we get:
\[
\frac{1}{(y - 1)(y - 3)} = \frac{1}{2(y - 1)} - \frac{1}{2(y - 3)}
\]
Thus, the integral becomes:
\[
\int \left( \frac{1}{2(y - 1)} - \frac{1}{2(y - 3)} \right) dy = \int \frac{dx}{x}
\]
Integrating both sides:
\[
\frac{1}{2} \ln \left| \frac{y - 1}{y - 3} \right| = \ln |x| + C
\]
Step 3: Solve for \( \varphi(x) \).
Exponentiating both sides gives:
\[
\left| \frac{y - 1}{y - 3} \right| = Cx
\]
This simplifies to:
\[
\frac{y - 1}{y - 3} = Cx
\]
Solving for \( y \), we get:
\[
y = \frac{3Cx + 1}{Cx + 1}
\]
Step 4: Use the initial condition.
Using the initial condition \( \varphi(0) = 2 \), we substitute \( x = 0 \) and \( y = 2 \):
\[
2 = \frac{1}{1}
\]
Thus, \( C = 1 \). Therefore, the solution is:
\[
y = \frac{3x + 1}{x + 1}
\]
Step 5: Find the limit as \( x \to -\infty \).
As \( x \to -\infty \), the limit of \( y \) is:
\[
\lim_{x \to -\infty} \varphi(x) = 3
\]
Final Answer:
\[
\boxed{\lim_{x \to -\infty} \varphi(x) = 3}
\]