Let \( V = \{ p : p(x) = a_0 + a_1 x + a_2 x^2, a_0, a_1, a_2 \in \mathbb{R} \} \) be the vector space of all polynomials of degree at most 2 over the real field \( \mathbb{R} \). Let \( T: V \to V \) be the linear operator given by
\[ T(p) = (p(0) - p(1)) + (p(0) + p(1)) x + p(0) x^2. \] Then the sum of the eigenvalues of \( T \) is \(\underline{\hspace{2cm}}\) .
The eigenvalues of the matrix

are \( \lambda_1, \lambda_2, \lambda_3 \). The value of \( \lambda_1 \lambda_2 \lambda_3 ( \lambda_1 + \lambda_2 + \lambda_3 ) \) is: