Let \( \langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) be an inner product on the vector space \( \mathbb{R}^n \) over \( \mathbb{R} \). Consider the following statements:
P: \( |\langle u, v \rangle| \leq \frac{1}{2} \left( \langle u, u \rangle + \langle v, v \rangle \right) \) for all \( u, v \in \mathbb{R}^n \).
Q: If \( \langle u, v \rangle = \langle 2u, -v \rangle \) for all \( v \in \mathbb{R}^n \), then \( u = 0 \).
Then, which of the following is correct?