Given:
\( \vec{c} = \vec{a} - \vec{b} \)
Let \( \vec{a} = (\alpha, 4, 2) \) and \( \vec{b} = (5, 3, 4) \). Then, \( \vec{c} = (x, y, z) = (\alpha - 5, 1, -2) \)
Hence, \( x = \alpha - 5, \, y = 1, \, z = -2 \quad \ldots (1) \)
The area of the triangle is given as \( 5\sqrt{6} \).
Using the formula for the area of a triangle formed by two vectors:
\( \frac{1}{2} |\vec{a} \times \vec{c}| = 5\sqrt{6} \)
Therefore,
\( |\vec{a} \times \vec{c}| = 10\sqrt{6} \)
Now, compute the cross product:
\[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 4 & 2 \\ x & 1 & -2 \end{vmatrix} \]
\( = \hat{i}(4(-2) - 2(1)) - \hat{j}(\alpha(-2) - 2x) + \hat{k}(\alpha(1) - 4x) \)
\( = \hat{i}(-10) - \hat{j}(-2\alpha - 2x) + \hat{k}(\alpha - 4x) \)
Taking magnitude:
\( |(-10\hat{i} - \hat{j}(-2\alpha - 2x) + \hat{k}(\alpha - 4x))| = 10\sqrt{6} \)
Thus,
\( (2\alpha + 2x - 10)^2 + (\alpha - 4x + 20)^2 = 500 \)
Simplifying:
\( (4\alpha - 10)^2 + (20 - 3\alpha)^2 = 500 \)
\( 25\alpha^2 - 80\alpha - 120\alpha = 0 \)
\( \alpha (25\alpha - 200) = 0 \)
\( \alpha = 8 \) (since \( \alpha \) is positive)
Substituting back into (1):
\( x = \alpha - 5 = 3 \)
Now, the magnitude of \( \vec{c} \) is:
\( |\vec{c}|^2 = x^2 + y^2 + z^2 \)
\( = 9 + 1 + 4 = 14 \)
Hence, the final value is:
\( |\vec{c}| = \sqrt{14} \)
Step 1: Expression for \(\vec{c}\)
The vector \(\vec{c}\) is given as:
\(\vec{c} = \vec{a} - \vec{b}\).
Substitute \(\vec{a} = \alpha \hat{i} + 4 \hat{j} + 2 \hat{k}\) and \(\vec{b} = 5 \hat{i} + 3 \hat{j} + 4 \hat{k}\):
\(\vec{c} = (\alpha - 5)\hat{i} + (4 - 3)\hat{j} + (2 - 4)\hat{k}\).
Thus:
\(\vec{c} = (\alpha - 5)\hat{i} + \hat{j} - 2\hat{k}\).
Step 2: Area of the triangle
The area of the triangle is given as:
\(\text{Area} = \frac{1}{2} |\vec{a} \times \vec{c}|.\)
Substitute \(\text{Area} = 5\sqrt{6}\):
\(\frac{1}{2} |\vec{a} \times \vec{c}| = 5\sqrt{6}.\)
\(|\vec{a} \times \vec{c}| = 10\sqrt{6}.\)
Step 3: Cross product \(\vec{a} \times \vec{c}\)
The cross product \(\vec{a} \times \vec{c}\) is given by:
\[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 4 & 2 \\ \alpha - 5 & 1 & -2 \end{vmatrix}. \]
Expanding the determinant:
\(\vec{a} \times \vec{c} = \hat{i} \begin{vmatrix} 4 & 2 \\ 1 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} \alpha & 2 \\ \alpha - 5 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} \alpha & 4 \\ \alpha - 5 & 1 \end{vmatrix}. \)
Calculate each minor:
1. For \(\hat{i}\): \(\begin{vmatrix} 4 & 2 \\ 1 & -2 \end{vmatrix} = (4)(-2) - (2)(1) = -8 - 2 = -10.\)
2. For \(\hat{j}\): \(\begin{vmatrix} \alpha & 2 \\ \alpha - 5 & -2 \end{vmatrix} = (\alpha)(-2) - (\alpha - 5)(2) = -2\alpha - 2\alpha + 10 = -4\alpha + 10.\)
3. For \(\hat{k}\): \(\begin{vmatrix} \alpha & 4 \\ \alpha - 5 & 1 \end{vmatrix} = (\alpha)(1) - (\alpha - 5)(4) = \alpha - 4\alpha + 20 = -3\alpha + 20.\)
Thus:
\(\vec{a} \times \vec{c} = -10\hat{i} - (-4\alpha + 10)\hat{j} + (-3\alpha + 20)\hat{k}.\)
\(\vec{a} \times \vec{c} = -10\hat{i} + (4\alpha - 10)\hat{j} + (-3\alpha + 20)\hat{k}.\)
Step 4: Magnitude of \(\vec{a} \times \vec{c}\)
The magnitude is:
\(|\vec{a} \times \vec{c}| = \sqrt{(-10)^2 + (4\alpha - 10)^2 + (-3\alpha + 20)^2}.\)
\(|\vec{a} \times \vec{c}| = \sqrt{100 + (16\alpha^2 - 80\alpha + 100) + (9\alpha^2 - 120\alpha + 400)}.\)
\(|\vec{a} \times \vec{c}| = \sqrt{25\alpha^2 - 200\alpha + 600}.\)
Set \(|\vec{a} \times \vec{c}| = 10\sqrt{6}\):
\(\sqrt{25\alpha^2 - 200\alpha + 600} = 10\sqrt{6}.\)
Square both sides:
\(25\alpha^2 - 200\alpha + 600 = 600.\)
\(25\alpha(\alpha - 8) = 0.\)
Since \(\alpha > 0\), \(\alpha = 8.\)
Step 5: Calculate \(|\vec{c}|^2\)
Substitute \(\alpha = 8\) into \(\vec{c}\):
\(\vec{c} = 3\hat{i} + \hat{j} - 2\hat{k}.\)
The magnitude squared is:
\(|\vec{c}|^2 = 3^2 + (1)^2 + (-2)^2.\)
\(|\vec{c}|^2 = 9 + 1 + 4 = 14.\)
Final Answer: Option (2).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
