\[ \Delta = \begin{vmatrix} 1 + \cos^2\theta & \sin^2\theta & 4\sin3\theta \\ \cos^2\theta & 1 + \sin^2\theta & 4\sin3\theta \\ \cos^2\theta & \sin^2\theta & 1 + 4\sin3\theta \end{vmatrix} = 0 \]
Perform \(R_1 \to R_1 - R_2\) and \(R_2 \to R_2 - R_3\):\[ \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ \cos^2\theta & \sin^2\theta & 1 + 4\sin3\theta \end{vmatrix} = 0 \]
Expanding along \(R_1\):\[ 1(1 + 4\sin3\theta + \sin^2\theta) - (-1)(0 + \cos^2\theta) = 0 \]
\[ 1 + 4\sin3\theta + \sin^2\theta + \cos^2\theta = 0 \]
Using \(\sin^2\theta + \cos^2\theta = 1\):\[ 1 + 4\sin3\theta + 1 = 0 \implies 4\sin3\theta = -2 \implies \sin3\theta = -\frac{1}{2} \]
Since \(\theta \in (0, \pi/2)\), we have \(3\theta \in (0, 3\pi/2)\).\[ 3\theta = \frac{7\pi}{6} \implies \theta = \frac{7\pi}{18} \]
Step 4: Final Answer:The value of the determinant where \( \omega \) is cube root of unity is \[ \begin{vmatrix} \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \end{vmatrix} \]



