Step 1: Rewrite the given equation.
Given
\[
B(I - A) = (I + A)
\]
Multiplying both sides by \( (I - A)^{-1} \), we get
\[
B = (I + A)(I - A)^{-1}
\]
Step 2: Compute \( I - A \) and \( I + A \).
\[
I - A =
\begin{bmatrix}
1 & 2 & -3 \\
2 & 1 & -1 \\
1 & -1 & 1
\end{bmatrix},
\quad
I + A =
\begin{bmatrix}
1 & -2 & 3 \\
-2 & 1 & 1 \\
-1 & 1 & 1
\end{bmatrix}
\]
Step 3: Find \( (I - A)^{-1 \).}
By evaluating the inverse of \( I - A \) using elementary row operations, we obtain \( (I - A)^{-1} \).
Step 4: Final multiplication.
Multiplying \( (I + A) \) with \( (I - A)^{-1} \), we get
\[
B =
\begin{bmatrix}
-1 & \tfrac{2}{3} & \tfrac{2}{3} \\
-2 & \tfrac{5}{3} & -\tfrac{10}{3} \\
-2 & 2 & -3
\end{bmatrix}
\]