Step 1: Understanding the matrix powers.
The matrix \( A \) is a 2x2 matrix with the property:
\[
A^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I
\]
where \( I \) is the identity matrix.
Step 2: Generalizing for \( A^{2n} \).
Since \( A^2 = -I \), for any integer \( n \), we have:
\[
A^{2n} = (-I)^n = (-1)^n I
\]
Thus, \( A^{2n} \) is either \( I \) or \( -I \), depending on whether \( n \) is even or odd.
Step 3: Conclusion.
The matrix \( A^{2n} \) has the form \( \begin{pmatrix} \pm1 & 0 \\ 0 & \pm1 \end{pmatrix} \). The correct answer is (2).