The dot product of two unit vectors is given by: \[ \mathbf{\hat{a}} \cdot \mathbf{\hat{b}} = \cos \theta. \]
Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1. \]
Substitute \( \sin \theta = \frac{3}{5} \): \[ \left( \frac{3}{5} \right)^2 + \cos^2 \theta = 1. \] Simplify: \[ \frac{9}{25} + \cos^2 \theta = 1 \implies \cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25}. \]
Thus: \[ \cos \theta = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5}. \]
Final Answer: \( \mathbf{\hat{a}} \cdot \mathbf{\hat{b}} = \pm \frac{4}{5} \), (C).
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?