Question:

Let θ \theta be the angle between two unit vectors a^ \mathbf{\hat{a}} and b^ \mathbf{\hat{b}} such that sinθ=35 \sin \theta = \frac{3}{5} . Then, a^b^ \mathbf{\hat{a}} \cdot \mathbf{\hat{b}} is equal to:

Show Hint

Remember that sin2θ+cos2θ=1 \sin^2 \theta + \cos^2 \theta = 1 . Use this identity to compute cosθ \cos \theta when sinθ \sin \theta is given.
Updated On: Jan 18, 2025
  • ±35 \pm \frac{3}{5}
  • ±34 \pm \frac{3}{4}
  • ±45 \pm \frac{4}{5}
  • ±43 \pm \frac{4}{3}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The dot product of two unit vectors is given by: a^b^=cosθ. \mathbf{\hat{a}} \cdot \mathbf{\hat{b}} = \cos \theta.  

Using the Pythagorean identity: sin2θ+cos2θ=1. \sin^2 \theta + \cos^2 \theta = 1.  

Substitute sinθ=35 \sin \theta = \frac{3}{5} : (35)2+cos2θ=1. \left( \frac{3}{5} \right)^2 + \cos^2 \theta = 1. Simplify: 925+cos2θ=1    cos2θ=1925=1625. \frac{9}{25} + \cos^2 \theta = 1 \implies \cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25}.  

Thus: cosθ=±1625=±45. \cos \theta = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5}.  

Final Answer: a^b^=±45 \mathbf{\hat{a}} \cdot \mathbf{\hat{b}} = \pm \frac{4}{5} , (C).

Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions