The dot product of two unit vectors \( \hat{a} \) and \( \hat{b} \) is given by:
\[
\hat{a} \cdot \hat{b} = |\hat{a}| |\hat{b}| \cos \theta,
\]
where \( |\hat{a}| = |\hat{b}| = 1 \) (since they are unit vectors). Therefore:
\[
\hat{a} \cdot \hat{b} = \cos \theta.
\]
We are given \( \sin \theta = \frac{3}{5} \). Using the Pythagorean identity:
\[
\sin^2 \theta + \cos^2 \theta = 1,
\]
we find:
\[
\left(\frac{3}{5}\right)^2 + \cos^2 \theta = 1,
\]
\[
\frac{9}{25} + \cos^2 \theta = 1,
\]
\[
\cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25}.
\]
Thus:
\[
\cos \theta = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5}.
\]
Therefore, the value of \( \hat{a} \cdot \hat{b} \) is:
\[
\hat{a} \cdot \hat{b} = \pm \frac{4}{5}.
\]
Hence, the correct answer is (C) \( \pm \frac{4}{5} \).