Let the vectors \(\vec{a}\) and \(\vec{b}\) be such that |\(\vec{a}\)|\(=3\) and |\(\vec{b}\)|\(=\sqrt{\frac{2}{3}}\) ,then \(\vec{a}\times\vec{b}\) is a unit vector,if the angle between \(\vec{a} \) and \(\vec{b}\) is
\(\frac{\pi}{6}\)
\(\frac{\pi}{4}\)
\(\frac{\pi}{3}\)
\(\frac{\pi}{2}\)
It is given that |\(\vec{a}\)|\(=3\),and |\(\vec{b}\)|\(=\sqrt{\frac{2}{3}}\)
We know that \(\vec{a}\times \vec{b}\)\(=|\vec{a}||\vec{b}|sin\theta\hat{n}\) ,where \(\hat{n}\) is a unit vector perpendicular to both \(\vec{a}\) and \(\vec{b}\) and θ is the angle between \(\vec{a}\space and\space\vec{b}\).
Now,\(\vec{a}\times \vec{b}\) is a unit vector if |\(\vec{a}\times \vec{b}\)|\(=1\)
|\(\vec{a}\times \vec{b}\)|=1
⇒\(|\vec{a}||\vec{b}|sin\theta\hat{n}=1\)
\(⇒3×\sqrt{\frac{2}{3}}×sinθ=1\)
\(⇒sinθ=\frac{1}{\sqrt{2}}\)
\(⇒θ=\frac{\pi}{4}\)
Hence,\(\vec{a}\times \vec{b}\) is a unit vector if the angle between \(\vec{a}\space and\space \vec{b} \space is \space \frac{\pi}{4}.\)
The correct answer is B.
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |