Question:

Let the straight line $ x = b $ divide the area enclosed by $ y = (1 - x)^2 $ , $ y = 0 $ and $ x = 0 $ into two parts $ R_1(0 \le x \le b) $ and $ R_2(b \le x \le 1) $ such that $ R_1-R_2 = \frac {1}{4}. $ Then, $b$ equals

Updated On: Aug 25, 2023
  • $ \frac{3}{4} $
  • $ \frac{1}{2} $
  • $ \frac{1}{3} $
  • $ \frac{1}{4} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

Given, curve $y=(1-x)^{2}$ is a parabola, which open upward


$\therefore R_{1}=\int_{0}^{b} y \,dx $
$=\int_{0}^{b} \left(1-x\right)^{2} dx=\left[-\frac{\left(1-x\right)^{3}}{3}\right]_{0}^{b}$
$=\frac{-1}{3}\left[\left(1-b\right)^{3}-1\right]$ and $R_{2}=\int_{1}^{b} y' dx$
$=\int^{b}_{1}\left(1-x\right)^{2} dx =\left[-\frac{\left(1-x\right)^{3}}{3}\right]_{1}^{b}$
$=-\frac{1}{3}\left[-\frac{\left(1-b\right)^{3}}{3}-0\right]$
$=+\frac{1}{3}\left[\left(1-b\right)^{3}\right]$
But it is given, $R_{1}-R_{2}=\frac{1}{4}$
$\therefore -\frac{1}{3}\left[\left(1-b\right)^{3}-1\right]-\frac{1}{3}\left[\left(1-b\right)^{3}\right]=\frac{1}{4}$
$\Rightarrow -\frac{1}{3}\left[2\left(1-b\right)^{3}-1\right]=\frac{1}{4}$
$\Rightarrow 2\left(1-b\right)^{3}=-\frac{3}{4}+1$
$\Rightarrow \left(1-b\right)^{3}=1 /8$
$\Rightarrow 1-b=1/ 2$
$\Rightarrow b=1-\frac{1}{2}$
$=\frac{1}{2}$
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given that;
Straight line x=b
area enclosed by \(y=(1-x)^2,y=0,x=0\)
\(R_1(0≤x≤b)\) and \(R_2(b≤x≤1)\) such that \(R_1-R_2=\frac{1}{2}\)
\(\int^b_0(1-x)^2dx-\int^1_b(1-x)^2dx=\frac{1}{4}\)
\([\frac{(x-1)^3}{3}]^6_0-[\frac{(x-1)^3}{3}]^1_b=\frac{1}{4}\)
\(\frac{2(b-1)^3}{3}=-\frac{1}{12}\)
\((b-1)^3=-\frac{1}{8}\)
\(b=\frac{1}{2}\)
straight line
Was this answer helpful?
0
0

Concepts Used:

Applications of Integrals

There are distinct applications of integrals, out of which some are as follows:

In Maths

Integrals are used to find:

  • The center of mass (centroid) of an area having curved sides
  • The area between two curves and the area under a curve
  • The curve's average value

In Physics

Integrals are used to find:

  • Centre of gravity
  • Mass and momentum of inertia of vehicles, satellites, and a tower
  • The center of mass
  • The velocity and the trajectory of a satellite at the time of placing it in orbit
  • Thrust