Let the straight line $ x = b $ divide the area enclosed by $ y = (1 - x)^2 $ , $ y = 0 $ and $ x = 0 $ into two parts $ R_1(0 \le x \le b) $ and $ R_2(b \le x \le 1) $ such that $ R_1-R_2 = \frac {1}{4}. $ Then, $b$ equals
Given, curve $y=(1-x)^{2}$ is a parabola, which open upward
$\therefore R_{1}=\int_{0}^{b} y \,dx $ $=\int_{0}^{b} \left(1-x\right)^{2} dx=\left[-\frac{\left(1-x\right)^{3}}{3}\right]_{0}^{b}$ $=\frac{-1}{3}\left[\left(1-b\right)^{3}-1\right]$ and $R_{2}=\int_{1}^{b} y' dx$ $=\int^{b}_{1}\left(1-x\right)^{2} dx =\left[-\frac{\left(1-x\right)^{3}}{3}\right]_{1}^{b}$ $=-\frac{1}{3}\left[-\frac{\left(1-b\right)^{3}}{3}-0\right]$ $=+\frac{1}{3}\left[\left(1-b\right)^{3}\right]$ But it is given, $R_{1}-R_{2}=\frac{1}{4}$ $\therefore -\frac{1}{3}\left[\left(1-b\right)^{3}-1\right]-\frac{1}{3}\left[\left(1-b\right)^{3}\right]=\frac{1}{4}$ $\Rightarrow -\frac{1}{3}\left[2\left(1-b\right)^{3}-1\right]=\frac{1}{4}$ $\Rightarrow 2\left(1-b\right)^{3}=-\frac{3}{4}+1$ $\Rightarrow \left(1-b\right)^{3}=1 /8$ $\Rightarrow 1-b=1/ 2$ $\Rightarrow b=1-\frac{1}{2}$ $=\frac{1}{2}$
Was this answer helpful?
0
0
Hide Solution
Verified By Collegedunia
Approach Solution -2
Given that; Straight line x=b area enclosed by \(y=(1-x)^2,y=0,x=0\) \(R_1(0≤x≤b)\) and \(R_2(b≤x≤1)\) such that \(R_1-R_2=\frac{1}{2}\) \(\int^b_0(1-x)^2dx-\int^1_b(1-x)^2dx=\frac{1}{4}\) ⇒\([\frac{(x-1)^3}{3}]^6_0-[\frac{(x-1)^3}{3}]^1_b=\frac{1}{4}\) ⇒\(\frac{2(b-1)^3}{3}=-\frac{1}{12}\) ⇒\((b-1)^3=-\frac{1}{8}\) ⇒\(b=\frac{1}{2}\)