Given differential equation:
\[ \frac{dy}{dx} - y = 1 + 4 \sin x. \]
This is a first-order linear differential equation. To solve, we use an integrating factor (IF):
\[ \text{IF} = e^{-x}. \]
Multiplying the entire equation by the integrating factor: \[ e^{-x} \frac{dy}{dx} - e^{-x} y = e^{-x} + 4e^{-x} \sin x. \]
The left-hand side becomes the derivative of \(y e^{-x}\): \[ \frac{d}{dx}(y e^{-x}) = e^{-x} + 4e^{-x} \sin x. \]
Integrating both sides:
\[ y e^{-x} = \int \left(e^{-x} + 4e^{-x} \sin x\right) dx. \]
Evaluating the integral:
\[ y e^{-x} = \int e^{-x} dx + 4 \int e^{-x} \sin x \, dx. \]
The first integral is straightforward:
\[ \int e^{-x} dx = -e^{-x}. \]
For the second integral, we use integration by parts or known results:
\[ 4 \int e^{-x} \sin x \, dx = -2e^{-x} (\sin x + \cos x). \]
Thus: \[ y e^{-x} = -e^{-x} - 2e^{-x} (\sin x + \cos x) + C. \]
Multiplying through by \(e^x\): \[ y = -1 - 2(\sin x + \cos x) + C e^x. \]
Using the initial condition \(y(\pi) = 1\):
\[ 1 = -1 - 2(\sin \pi + \cos \pi) + C e^\pi. \]
Since \(\sin \pi = 0\) and \(\cos \pi = -1\):
\[ 1 = -1 - 2(-1) + C e^\pi \implies 1 = 1 + C e^\pi \implies C = 0. \]
Thus, the solution simplifies to: \[ y = -1 - 2(\sin x + \cos x). \]
Evaluating at \(x = \frac{\pi}{2}\):
\[ y\left(\frac{\pi}{2}\right) = -1 - 2\left(\sin \frac{\pi}{2} + \cos \frac{\pi}{2}\right) = -1 - 2(1 + 0) = -3. \]
Calculating \(y\left(\frac{\pi}{2}\right) + 10\):
\[ y\left(\frac{\pi}{2}\right) + 10 = -3 + 10 = 7. \]

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
