\(\frac{\pi}{4}\)
\(\frac{3\pi}{4}\)
\(\frac{\pi}{2}\)
\(\frac{3\pi}{2}\)
\(D.E (1 + e^{2x})\frac{dy}{dx} + y = 1\)
\(⇒\) \(\frac{dy}{dx} + y = \frac{1}{1+e^{2x}}\)
\(\text{I.F.} = e^{\int 1 \,dx} = e^x\)
\(∴\)\(e^x y(x) = \int \frac{e^x}{1 + e^{2x}} \,dx\)
\(⇒\)\(e^x y(x) = \tan^{-1}(e^x) + C\)
\(∵\) It passes through
\((0, \frac{\pi}{2}), \quad C = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}\)
\(∴\) \(\lim_{{x \to \infty}} e^x y(x) = \lim_{{x \to \infty}} \tan^{-1}(e^x) + \frac{\pi}{4}\)
\(= \frac{3\pi}{4}\)
So, the correct option is (B): \(\frac{3\pi}{4}\)
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).
A relation between involved variables, which satisfy the given differential equation is called its solution. The solution which contains as many arbitrary constants as the order of the differential equation is called the general solution and the solution free from arbitrary constants is called particular solution.
Read More: Formation of a Differential Equation