The homogeneous equation of second degree:
\[
ax^2 + 2hxy + by^2 = 0
\]
represents two straight lines passing through the origin.
The slopes of the lines are roots of the equation:
\[
am^2 + 2hm + b = 0
\]
Let roots be \( m_1, m_2 \). Then,
- Sum of roots: \( m_1 + m_2 = \frac{-2h}{a} \)
- Product of roots: \( m_1 m_2 = \frac{b}{a} \)
Given:
\[
3(m_1 - m_2) = 7 \Rightarrow m_1 - m_2 = \frac{7}{3}
\quad \text{and} \quad m_1 m_2 = 2
\]
We also know:
\[
(m_1 - m_2)^2 = (m_1 + m_2)^2 - 4m_1 m_2
\Rightarrow \left(\frac{7}{3}\right)^2 = (m_1 + m_2)^2 - 8
\Rightarrow \frac{49}{9} = (m_1 + m_2)^2 - 8
\Rightarrow (m_1 + m_2)^2 = \frac{121}{9}
\Rightarrow m_1 + m_2 = \pm \frac{11}{3}
\]
Now:
\[
m_1 + m_2 = \frac{-2h}{a} = \pm \frac{11}{3} \Rightarrow h = \mp \frac{11a}{6}
\]
Also:
\[
m_1 m_2 = \frac{b}{a} = 2 \Rightarrow b = 2a
\]
Now, plug into:
- \( a = a \)
- \( b = 2a \)
- \( h = \mp \frac{11a}{6} \)
Divide all by \( a \):
\[
\frac{a}{12} = \frac{b}{6} = \frac{h}{\pm 11}
\Rightarrow \boxed{ \frac{a}{12} = \frac{b}{6} = \frac{h}{\pm 11} }
\]