Question:

Let the set of all positive values of \( \lambda \), for which the point of local minimum of the function \((1 + x (\lambda^2 - x^2)) \frac{x^2 + x + 2}{x^2 + 5x + 6} < 0\) be \((\alpha, \beta)\).
Then \( \alpha^2 + \beta^2 \) is equal to ________.

Updated On: Mar 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 39

Solution and Explanation

Step 1: Solve \( \frac{x^2 + x + 2}{x^2 + 5x + 6} < 0 \)

Factorize the numerator and denominator:

\( \frac{x^2 + x + 2}{x^2 + 5x + 6} = \frac{x^2 + x + 2}{(x + 2)(x + 3)}. \)

Analyze the sign of the inequality \( \frac{x^2 + x + 2}{(x + 2)(x + 3)} < 0 \) using the critical points:

  • The critical points are \(x = -3\), \(x = -2\), and the roots of \(x^2 + x + 2 = 0\).
  • Solve \(x^2 + x + 2 = 0\) using the discriminant:
  • The roots are complex, so \(x^2 + x + 2 > 0\) for all \(x \in \mathbb{R}\).

Thus, the inequality reduces to:

\( \frac{1}{(x + 2)(x + 3)} < 0. \)

From the critical points \(x = -3\) and \(x = -2\), analyze the intervals:

  • For \(x \in (-\infty, -3)\), the product \((x + 2)(x + 3) > 0\).
  • For \(x \in (-3, -2)\), the product \((x + 2)(x + 3) < 0\).
  • For \(x \in (-2, \infty)\), the product \((x + 2)(x + 3) > 0\).

Therefore, the solution to \( \frac{1}{(x+2)(x+3)} < 0 \) is:

\( x \in (-3, -2). \) \(\hspace{20pt}(1)\)

Step 2: Find the local minima of \(f(x)\)

The function is given as:

\( f(x) = 1 + x(\lambda^2 - x^2). \)

Find \(f'(x)\):

\( f'(x) = (\lambda^2 - x^2) + (-2x)x. \) \( f'(x) = \lambda^2 - x^2 - 2x^2 = \lambda^2 - 3x^2. \)

Set \(f'(x) = 0\) to find the critical points:

\( \lambda^2 - 3x^2 = 0. \) \( x^2 = \frac{\lambda^2}{3}. \) \( x = \pm \frac{\lambda}{\sqrt{3}}. \)

From the critical points \(x = \pm \frac{\lambda}{\sqrt{3}}\):

  • At \(x = \frac{\lambda}{\sqrt{3}}\), \(f(x)\) achieves a local maximum.
  • At \(x = -\frac{\lambda}{\sqrt{3}}\), \(f(x)\) achieves a local minimum.

Thus, the point of local minimum is:

\( x = -\frac{\lambda}{\sqrt{3}}. \hspace{20pt}(2)\)

Step 3: Condition for \(x \in (-3, -2)\)

From equation (1), \(x \in (-3, -2)\). Substituting \(x = -\frac{\lambda}{\sqrt{3}}\):

\( -3 < -\frac{\lambda}{\sqrt{3}} < -2. \)

Multiply through by \(-1\) (reversing the inequality):

\( 3 > \frac{\lambda}{\sqrt{3}} > 2. \)

Multiply through by \(\sqrt{3}\):

\( 3\sqrt{3} > \lambda > 2\sqrt{3}. \)

Thus, the set of all positive \(\lambda\) values is:

\( \lambda \in (2\sqrt{3}, 3\sqrt{3}). \)

Step 4: Compute \(\alpha^2 + \beta^2\)

From the interval \(\lambda \in (2\sqrt{3}, 3\sqrt{3})\), we have:

  • \(\alpha = 2\sqrt{3}, \beta = 3\sqrt{3}.\)

Compute \(\alpha^2 + \beta^2\):

\( \alpha^2 + \beta^2 = (2\sqrt{3})^2 + (3\sqrt{3})^2. \) \( \alpha^2 + \beta^2 = 4(3) + 9(3) = 12 + 27 = 39. \)

Final Answer is 39.

Was this answer helpful?
0
0