Factorize the numerator and denominator:
\( \frac{x^2 + x + 2}{x^2 + 5x + 6} = \frac{x^2 + x + 2}{(x + 2)(x + 3)}. \)
Analyze the sign of the inequality \( \frac{x^2 + x + 2}{(x + 2)(x + 3)} < 0 \) using the critical points:
Thus, the inequality reduces to:
\( \frac{1}{(x + 2)(x + 3)} < 0. \)
From the critical points \(x = -3\) and \(x = -2\), analyze the intervals:
Therefore, the solution to \( \frac{1}{(x+2)(x+3)} < 0 \) is:
\( x \in (-3, -2). \) \(\hspace{20pt}(1)\)
The function is given as:
\( f(x) = 1 + x(\lambda^2 - x^2). \)
Find \(f'(x)\):
\( f'(x) = (\lambda^2 - x^2) + (-2x)x. \) \( f'(x) = \lambda^2 - x^2 - 2x^2 = \lambda^2 - 3x^2. \)
Set \(f'(x) = 0\) to find the critical points:
\( \lambda^2 - 3x^2 = 0. \) \( x^2 = \frac{\lambda^2}{3}. \) \( x = \pm \frac{\lambda}{\sqrt{3}}. \)
From the critical points \(x = \pm \frac{\lambda}{\sqrt{3}}\):
Thus, the point of local minimum is:
\( x = -\frac{\lambda}{\sqrt{3}}. \hspace{20pt}(2)\)
From equation (1), \(x \in (-3, -2)\). Substituting \(x = -\frac{\lambda}{\sqrt{3}}\):
\( -3 < -\frac{\lambda}{\sqrt{3}} < -2. \)
Multiply through by \(-1\) (reversing the inequality):
\( 3 > \frac{\lambda}{\sqrt{3}} > 2. \)
Multiply through by \(\sqrt{3}\):
\( 3\sqrt{3} > \lambda > 2\sqrt{3}. \)
Thus, the set of all positive \(\lambda\) values is:
\( \lambda \in (2\sqrt{3}, 3\sqrt{3}). \)
From the interval \(\lambda \in (2\sqrt{3}, 3\sqrt{3})\), we have:
Compute \(\alpha^2 + \beta^2\):
\( \alpha^2 + \beta^2 = (2\sqrt{3})^2 + (3\sqrt{3})^2. \) \( \alpha^2 + \beta^2 = 4(3) + 9(3) = 12 + 27 = 39. \)
Define \( f(x) = \begin{cases} x^2 + bx + c, & x< 1 \\ x, & x \geq 1 \end{cases} \). If f(x) is differentiable at x=1, then b−c is equal to