We are tasked to find the distance between points \( R \) and \( T \) on the given lines:
The parametric coordinates of a point \( R(\lambda) \) on Line 1 are: \[ R(\lambda) = (3\lambda + 5, 4\lambda + 3, 2\lambda + 4). \]
The parametric coordinates of a point \( T(\mu) \) on Line 2 are: \[ T(\mu) = (2\mu - 1, 2\mu - 5, \mu). \]
Substitute \( R(\lambda) \) into the given plane equation: \[ 3x + 4y + 2z = 4. \] Substituting \( R(\lambda) = (3\lambda + 5, 4\lambda + 3, 2\lambda + 4) \): \[ 3(3\lambda + 5) + 4(4\lambda + 3) + 2(2\lambda + 4) = 4. \] Simplify: \[ 9\lambda + 15 + 16\lambda + 12 + 4\lambda + 8 = 4. \] \[ 29\lambda + 35 = 4 \implies \lambda = -2. \] Substituting \( \lambda = -2 \): \[ R = (3(-2) + 5, 4(-2) + 3, 2(-2) + 4) = (-1, -5, 0). \]
Substitute \( T(\mu) \) into the given plane equation: \[ 3x + 4y + 2z = 4. \] Substituting \( T(\mu) = (2\mu - 1, 2\mu - 5, \mu) \): \[ 3(2\mu - 1) + 4(2\mu - 5) + 2\mu = 4. \] Simplify: \[ 6\mu - 3 + 8\mu - 20 + 2\mu = 4. \] \[ 16\mu - 23 = 4 \implies \mu = 1. \] Substituting \( \mu = 1 \): \[ T = (2(1) - 1, 2(1) - 5, 1) = (1, -3, 1). \]
The coordinates of \( R \) are \((-1, -5, 0)\), and the coordinates of \( T \) are \((1, -3, 1)\).
The distance \( RT \) is: \[ RT = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}. \] Substitute the values: \[ RT = \sqrt{(1 - (-1))^2 + (-3 - (-5))^2 + (1 - 0)^2}. \] Simplify: \[ RT = \sqrt{(1 + 1)^2 + (-3 + 5)^2 + (1 - 0)^2}. \] \[ RT = \sqrt{2^2 + 2^2 + 1^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3. \]
The distance \( RT = 3 , \text{units}.\)