Given:
\[ x^2 + y^2 = 3 \quad \text{and} \quad x^2 = 2y \]
To find the intersection point \(P\):
\[ y^2 + 2y - 3 = 0 \implies (y - 1)(y + 3) = 0 \]
Since \(y > 0\), we have:
\[ y = 1 \quad \text{and} \quad x = \sqrt{2} \implies P(\sqrt{2}, 1) \]
The line \(L : -\sqrt{2}x + y = \alpha\) passes through \(P\), so:
\[ -\sqrt{2}(\sqrt{2}) + 1 = \alpha \implies \alpha = -1 \]
For circle \(C_1\): - Center \(Q_1\) lies on the y-axis with coordinates \((0, a)\). - Given radius \(R_1 = 2\sqrt{5}\).
Applying the condition for tangency:
\[ \left| \frac{a - 3}{\sqrt{1 + 2}} \right| = 2\sqrt{5} \]
Squaring and simplifying:
\[ |a - 3| = 6 \implies a = 9 \quad \text{or} \quad a = -3 \]
Similarly, for circle \(C_2\): - Center \(Q_2\) lies on the y-axis at \((0, -3)\).
Calculating the square of the area of triangle \(PQ_1Q_2\):
\[ \text{Area} = \frac{1}{2} \left| \begin{vmatrix} \sqrt{2} & 1 & 1 \\ 0 & 9 & 1 \\ 0 & -3 & 1 \end{vmatrix} \right| \]
\[ = \frac{1}{2} \left| \sqrt{2}(9 + 3) \right| = 6\sqrt{2} \]
Square of the area = \((6\sqrt{2})^2 = 72\)
The equation of a circle which touches the straight lines $x + y = 2$, $x - y = 2$ and also touches the circle $x^2 + y^2 = 1$ is: