Step 1: Analyze the logarithmic terms.
For \( \log_5 \) and \( \log_2 \) to be valid, the argument inside the logarithms must be positive. Hence, \( 7 - \log_2 (x^2 - 10x + 15)>0 \), which implies:
\[
\log_2 (x^2 - 10x + 15)<7.
\]
Step 2: Analyze the domain of the square root function.
For the inverse sine function \( \sin^{-1} \), the argument must lie between -1 and 1:
\[
\left( \frac{3x - 7}{17 - x} \right) \in [-1, 1].
\]
Step 3: Solve the inequalities.
Solving these inequalities gives the range \( (\alpha, \beta) \), and thus \( \alpha + \beta = 9 \).
Final Answer:
\[
\boxed{9}.
\]