Step 1: Find total outcomes.
\[ |P(S)|=2^5=32 \] \[ \text{Total ordered pairs}=32\times32=2^{10} \] Step 2: Count favourable outcomes.
Each element of $S$ can be: \[ \text{in }A,\ \text{in }B,\ \text{or in neither} \] So, \[ \text{Favourable outcomes}=3^5 \] Step 3: Compute probability.
\[ P(E)=\frac{3^5}{2^{10}} \] Thus, \[ p=5,\quad q=10 \] Step 4: Final answer.
\[ p+q=15 \]
