Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation. If $T(1,1,0) = (2,0,0,0)$, $T(1,0,1) = (2,4,0,0)$, and $T(0,1,1) = (0,0,2,0)$, then $T(1,1,1)$ equals
Step 1: Express $(1,1,1)$ as a linear combination.
We have vectors: \[ v_1 = (1,1,0), v_2 = (1,0,1), v_3 = (0,1,1). \] We find $a,b,c$ such that \[ a(1,1,0) + b(1,0,1) + c(0,1,1) = (1,1,1). \] This gives system: \[ \begin{cases} a + b = 1, \\ a + c = 1, \\ b + c = 1. \end{cases} \] Solving, $a = b = c = \frac{1}{2}$.
Step 2: Use linearity of $T$.
\[ T(1,1,1) = \frac{1}{2}[T(1,1,0) + T(1,0,1) + T(0,1,1)]. \] \[ = \frac{1}{2}[(2,0,0,0) + (2,4,0,0) + (0,0,2,0)] = \frac{1}{2}(4,4,2,0) = (2,2,1,0). \]
Step 3: Conclusion.
\[ \boxed{T(1,1,1) = (2,2,1,0)}. \]
Find the rank of the matrix: \[ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 5 & 6 & 4 \\ 2 & 6 & 8 & 5 \end{bmatrix} \] Rank = ?