Question:

Let \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation such that \( T\left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \( T\left( \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} a \\ b \end{bmatrix} \). Then \( \alpha + \beta + a + b \) equals

Show Hint

In linear transformations, express the transformation as a matrix equation to find the unknowns.
Updated On: Dec 12, 2025
  • \( \frac{2}{3} \)
  • \( \frac{4}{3} \)
  • \( \frac{5}{3} \)
  • \( \frac{7}{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Understanding the linear transformation. 
The matrix representation of \( T \) must be found by solving the system of linear equations from the given information. Using the properties of linear transformations, you can derive the values for \( \alpha \), \( \beta \), \( a \), and \( b \). 
Step 2: Analyzing the options. 
\[ \alpha + \beta + a + b = \frac{2}{3} \] Step 3: Conclusion. 
The correct answer is (A) \( \frac{2}{3} \)
 

Was this answer helpful?
0
0

Top Questions on Matrix algebra

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions