\[\left\lfloor \frac{x}{2} + 3 \right\rfloor is discontinuous at x = 2, 4, 6, 8\]
\[\sqrt{x} \text{ is discontinuous at } x = 1, 4\]
\[F(x) \text{ is discontinuous at } x = 1, 2, 6, 8\]
Summing the values:
\[\sum a = 1 + 2 + 6 + 8 = 17\]
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.