\[\left\lfloor \frac{x}{2} + 3 \right\rfloor is discontinuous at x = 2, 4, 6, 8\]
\[\sqrt{x} \text{ is discontinuous at } x = 1, 4\]
\[F(x) \text{ is discontinuous at } x = 1, 2, 6, 8\]
Summing the values:
\[\sum a = 1 + 2 + 6 + 8 = 17\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: