Consider:
\[ \left( \sqrt{3} + \sqrt{2} \right)^x + \left( \sqrt{3} - \sqrt{2} \right)^x = 10 \]
Let:
\[ \left( \sqrt{3} + \sqrt{2} \right)^x = t \]
Thus:
\[ \left( \sqrt{3} - \sqrt{2} \right)^x = \frac{1}{t} \]
Substitute and simplify:
\[ t + \frac{1}{t} = 10 \]
Multiplying through by \( t \) gives:
\[ t^2 - 10t + 1 = 0 \]
Solving this quadratic equation:
\[ t = \frac{10 \pm \sqrt{100 - 4}}{2} = \frac{10 \pm \sqrt{96}}{2} = \frac{10 \pm 4\sqrt{6}}{2} = 5 \pm 2\sqrt{6} \]
Since:
\[ \left( \sqrt{3} + \sqrt{2} \right)^x > 0, \quad t = 5 + 2\sqrt{6} \]
Thus, the corresponding values of \( x \) are:
\[ x = 2 \quad \text{or} \quad x = -2 \]
Number of solutions = 2.
Determine the number of real solutions \( x \) to the equation \( (\sqrt{3} + \sqrt{2})^x + (\sqrt{3} - \sqrt{2})^x = 10 \).
Let \( t = (\sqrt{3} + \sqrt{2})^x \). Then \( (\sqrt{3} - \sqrt{2})^x = \frac{1}{t} \) because \( (\sqrt{3} - \sqrt{2}) = \frac{1}{\sqrt{3} + \sqrt{2}} \). The equation becomes \( t + \frac{1}{t} = 10 \), which simplifies to \( t^2 - 10t + 1 = 0 \).
Step 1: Make the substitution \( t = (\sqrt{3} + \sqrt{2})^x \).
Since \( (\sqrt{3} - \sqrt{2}) = \frac{1}{\sqrt{3} + \sqrt{2}} \), we have \( (\sqrt{3} - \sqrt{2})^x = \frac{1}{t} \).
The equation becomes:
\[ t + \frac{1}{t} = 10 \]
Step 2: Solve for \( t \).
\[ t + \frac{1}{t} = 10 \implies t^2 - 10t + 1 = 0 \] \[ t = \frac{10 \pm \sqrt{100 - 4}}{2} = \frac{10 \pm \sqrt{96}}{2} = \frac{10 \pm 4\sqrt{6}}{2} = 5 \pm 2\sqrt{6} \]
Step 3: Check the values of \( t \).
Note: \( \sqrt{3} + \sqrt{2} > 1 \), so \( t = (\sqrt{3} + \sqrt{2})^x > 0 \) for all real \( x \).
Both \( 5 + 2\sqrt{6} \) and \( 5 - 2\sqrt{6} \) are positive.
Also, \( (5 + 2\sqrt{6})(5 - 2\sqrt{6}) = 25 - 24 = 1 \), so \( 5 - 2\sqrt{6} = \frac{1}{5 + 2\sqrt{6}} \).
Step 4: Solve for \( x \) in each case.
Case 1: \( (\sqrt{3} + \sqrt{2})^x = 5 + 2\sqrt{6} \)
Note: \( 5 + 2\sqrt{6} = (\sqrt{3} + \sqrt{2})^2 \) because \( (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{6} = 5 + 2\sqrt{6} \).
So \( (\sqrt{3} + \sqrt{2})^x = (\sqrt{3} + \sqrt{2})^2 \implies x = 2 \).
Case 2: \( (\sqrt{3} + \sqrt{2})^x = 5 - 2\sqrt{6} \)
But \( 5 - 2\sqrt{6} = (\sqrt{3} - \sqrt{2})^2 \) because \( (\sqrt{3} - \sqrt{2})^2 = 3 + 2 - 2\sqrt{6} = 5 - 2\sqrt{6} \).
Also, \( (\sqrt{3} - \sqrt{2})^2 = \frac{1}{(\sqrt{3} + \sqrt{2})^2} \).
So \( (\sqrt{3} + \sqrt{2})^x = (\sqrt{3} + \sqrt{2})^{-2} \implies x = -2 \).
Step 5: Count the number of solutions.
We found \( x = 2 \) and \( x = -2 \). Both are real numbers.
Thus, the set \( S \) has 2 elements.
Therefore, the number of elements in \( S \) is 2.

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.