Consider:
\[ \left( \sqrt{3} + \sqrt{2} \right)^x + \left( \sqrt{3} - \sqrt{2} \right)^x = 10 \]
Let:
\[ \left( \sqrt{3} + \sqrt{2} \right)^x = t \]
Thus:
\[ \left( \sqrt{3} - \sqrt{2} \right)^x = \frac{1}{t} \]
Substitute and simplify:
\[ t + \frac{1}{t} = 10 \]
Multiplying through by \( t \) gives:
\[ t^2 - 10t + 1 = 0 \]
Solving this quadratic equation:
\[ t = \frac{10 \pm \sqrt{100 - 4}}{2} = \frac{10 \pm \sqrt{96}}{2} = \frac{10 \pm 4\sqrt{6}}{2} = 5 \pm 2\sqrt{6} \]
Since:
\[ \left( \sqrt{3} + \sqrt{2} \right)^x > 0, \quad t = 5 + 2\sqrt{6} \]
Thus, the corresponding values of \( x \) are:
\[ x = 2 \quad \text{or} \quad x = -2 \]
Number of solutions = 2.