Consider:
\[ \left( \sqrt{3} + \sqrt{2} \right)^x + \left( \sqrt{3} - \sqrt{2} \right)^x = 10 \]
Let:
\[ \left( \sqrt{3} + \sqrt{2} \right)^x = t \]
Thus:
\[ \left( \sqrt{3} - \sqrt{2} \right)^x = \frac{1}{t} \]
Substitute and simplify:
\[ t + \frac{1}{t} = 10 \]
Multiplying through by \( t \) gives:
\[ t^2 - 10t + 1 = 0 \]
Solving this quadratic equation:
\[ t = \frac{10 \pm \sqrt{100 - 4}}{2} = \frac{10 \pm \sqrt{96}}{2} = \frac{10 \pm 4\sqrt{6}}{2} = 5 \pm 2\sqrt{6} \]
Since:
\[ \left( \sqrt{3} + \sqrt{2} \right)^x > 0, \quad t = 5 + 2\sqrt{6} \]
Thus, the corresponding values of \( x \) are:
\[ x = 2 \quad \text{or} \quad x = -2 \]
Number of solutions = 2.
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: