Question:

Let $S =\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^2 \theta}+8^{2 \cos ^2 \theta}=16\right\} $ Then $ n ( S )+\displaystyle\sum_{\theta \in S }\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is equal to:

Updated On: Nov 27, 2024
  • 0
  • $-2$
  • -4
  • 12
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

\(8^{2\sin^2\theta}+8^{2-2\sin^2\theta}=16\)
\(y+\frac{64}{y}=16\)
\(⇒y=8\)
\(⇒\sin^2\theta=\frac{1}{2}\)
\(\therefore n(S)+\sum_{\theta\ ∈\ S}\frac{1}{\cos(\frac{\pi}{4}+2\theta)\sin(\frac{\pi}{4}+2\theta)}\)
\(=4+(-2)\times4\)
\(=-4\)
So, the correct option is (C) : -4.

Was this answer helpful?
4
20
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given :
\(S=\left\{\theta\in[0,2\pi]:8^{2\sin^2\theta}+8^{2\cos^2\theta}=16\right\}\)
Now apply AM ≥ GM for \(8^{2\sin^2\theta},8^{2\cos^2\theta}\)
\(\frac{8^{2\sin^2\theta}+8^{2\cos^2\theta}}{2}\ge\left(8^{2\sin^2\theta+2\cos^2\theta}\right)^{\frac{1}{2}}\)
8 ≥ 8
\(⇒8^{2\sin^2\theta}=8^{2\cos^2\theta}\) or \(\sin^2\theta=\cos^2\theta\)
\(\therefore\theta=\frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}\)
\(n(S)+\sum\limits_{\theta\in S}\sec(\frac{\pi}{4}+2\theta)\cosec(\frac{\pi}{4}+2\theta)\)
\(4+\sum\limits_{\theta\in S}\frac{2}{2\sin(\frac{\pi}{4}+2\theta)\cos(\frac{\pi}{4}+2\theta)}\)
\(=4+\sum\limits_{\theta\in S}\frac{2}{\sin(\frac{\pi}{2}+4\theta)}=4+2\sum\limits_{\theta\in S}\cosec(\frac{\pi}{2}+4\theta)\)
\(=4+2[\cosec(\frac{\pi}{2}+\pi)\cosec(\frac{\pi}{2}+3\pi)+\cosec(\frac{\pi}{2}+5\pi)+\cosec(\frac{\pi}{2}+7\pi)]\)
\(=4+2[-\cosec\frac{\pi}{2}-\cosec\frac{\pi}{2}-\cosec\frac{\pi}{2}-\cosec\frac{\pi}{2}]\)
\(=4-2(4)\)
\(=4-8=-4\)
So, the correct option is (C) : -4.

Was this answer helpful?
7
7

Notes on Trigonometric Identities

Concepts Used:

Trigonometric Equations

Equations involving trigonometric functions of a variable is known as Trigonometric Equations. Example: cos2x + 5 cos x – 7 = 0 , sin 5x + 3 sin2x = 6 , etc.

The solutions of these equations for a trigonometric function in variable x, where x lies in between 0≤x≤2π is called as principal solution. If the solution contains the integer ‘n’ in it, it is called as the general solution.

Consider the table below which illustrates the solutions for various trigonometric equations.