\(8^{2\sin^2\theta}+8^{2-2\sin^2\theta}=16\)
\(y+\frac{64}{y}=16\)
\(⇒y=8\)
\(⇒\sin^2\theta=\frac{1}{2}\)
\(\therefore n(S)+\sum_{\theta\ ∈\ S}\frac{1}{\cos(\frac{\pi}{4}+2\theta)\sin(\frac{\pi}{4}+2\theta)}\)
\(=4+(-2)\times4\)
\(=-4\)
So, the correct option is (C) : -4.
Given :
\(S=\left\{\theta\in[0,2\pi]:8^{2\sin^2\theta}+8^{2\cos^2\theta}=16\right\}\)
Now apply AM ≥ GM for \(8^{2\sin^2\theta},8^{2\cos^2\theta}\)
\(\frac{8^{2\sin^2\theta}+8^{2\cos^2\theta}}{2}\ge\left(8^{2\sin^2\theta+2\cos^2\theta}\right)^{\frac{1}{2}}\)
8 ≥ 8
\(⇒8^{2\sin^2\theta}=8^{2\cos^2\theta}\) or \(\sin^2\theta=\cos^2\theta\)
\(\therefore\theta=\frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}\)
\(n(S)+\sum\limits_{\theta\in S}\sec(\frac{\pi}{4}+2\theta)\cosec(\frac{\pi}{4}+2\theta)\)
\(4+\sum\limits_{\theta\in S}\frac{2}{2\sin(\frac{\pi}{4}+2\theta)\cos(\frac{\pi}{4}+2\theta)}\)
\(=4+\sum\limits_{\theta\in S}\frac{2}{\sin(\frac{\pi}{2}+4\theta)}=4+2\sum\limits_{\theta\in S}\cosec(\frac{\pi}{2}+4\theta)\)
\(=4+2[\cosec(\frac{\pi}{2}+\pi)\cosec(\frac{\pi}{2}+3\pi)+\cosec(\frac{\pi}{2}+5\pi)+\cosec(\frac{\pi}{2}+7\pi)]\)
\(=4+2[-\cosec\frac{\pi}{2}-\cosec\frac{\pi}{2}-\cosec\frac{\pi}{2}-\cosec\frac{\pi}{2}]\)
\(=4-2(4)\)
\(=4-8=-4\)
So, the correct option is (C) : -4.
Equations involving trigonometric functions of a variable is known as Trigonometric Equations. Example: cos2x + 5 cos x – 7 = 0 , sin 5x + 3 sin2x = 6 , etc.
The solutions of these equations for a trigonometric function in variable x, where x lies in between 0≤x≤2π is called as principal solution. If the solution contains the integer ‘n’ in it, it is called as the general solution.
Consider the table below which illustrates the solutions for various trigonometric equations.