Step 1: Apply Stokes’ theorem.
By Stokes’ theorem,
\[
\iint_S (\nabla \times \vec{F}) \cdot \hat{n}\, dS = \oint_C \vec{F} \cdot d\vec{r},
\]
where \(C\) is the boundary curve of \(S.\)
Step 2: Identify the boundary.
The surface \(z = 1 - x^2 - y^2\) meets \(z = 0\) when \(x^2 + y^2 = 1.\)
So \(C\) is the circle \(x^2 + y^2 = 1,\ z = 0,\) traversed counterclockwise.
Step 3: Parameterize \(C.\)
Let \(x = \cos t,\ y = \sin t,\ 0 \le t \le 2\pi.\)
Then \(d\vec{r} = (-\sin t\,\hat{i} + \cos t\,\hat{j})dt.\)
Step 4: Evaluate \(\vec{F}\) on \(C.\)
On \(z=0,\)
\[
\vec{F} = -y\hat{i} + (x - 1)\hat{j}.
\]
So,
\[
\vec{F} \cdot d\vec{r} = (-\sin t)(-\sin t) + (\cos t - 1)\cos t = \sin^2 t + \cos^2 t - \cos t = 1 - \cos t.
\]
Step 5: Compute line integral.
\[
\oint_C (1 - \cos t)\,dt = \int_0^{2\pi} (1 - \cos t)\,dt = [t - \sin t]_0^{2\pi} = 2\pi.
\]
Step 6: Compute required value.
\[
\frac{1}{\pi} \iint_S (\nabla \times \vec{F}) \cdot \hat{n}\, dS = \frac{1}{\pi}(2\pi) = 2.
\]
Step 7: Conclusion.
The required value is \(\boxed{2}.\)