(A) For \( T_1 = \{(-1 + n\sqrt{2})^2 : n \in \mathbb{N} \} \), using the binomial expansion:
\[ (-1 + \sqrt{2})^n = C_0(-1)^n + C_1(-1)^{n-1} \sqrt{2} + C_2(-1)^{n-2} (\sqrt{2})^2 + \dots \]
which simplifies to an integer + \( \sqrt{2} \times \) integer, so \( (-1+\sqrt{2})^n \in S \). Similarly, for
\[ T_2 = \{(1 + n\sqrt{2})^2 : n \in \mathbb{N} \} \]
the same reasoning holds. All integers (\(\mathbb{Z}\)) are of the form \( a + b\sqrt{2} \) with \( b = 0 \), so
\[ \mathbb{Z} \subseteq S. \]
Thus, \( \mathbb{Z} \cup T_1 \cup T_2 \subseteq S \).
(A is True).
(B) For \( T_1 \cap \left( 0, \frac{1}{2024} \right) \), consider:
\[ (-1 + n\sqrt{2})^2 : 0 < -1 + n\sqrt{2} < \frac{1}{2024}. \]
For sufficiently large \( n \),
\[ -1 + n\sqrt{2} > 0.414, \]
so no elements of \( T_1 \) satisfy this condition.
\[ T_1 \cap \left( 0, \frac{1}{2024} \right) = \emptyset. \]
(B is False).
(C) For \( T_2 = \{(1 + n\sqrt{2})^2 : n \in \mathbb{N} \} \), consider:
\[ (1 + n\sqrt{2})^2 > 2024. \] \[ n\sqrt{2} > 2023 \Rightarrow n > \frac{2023}{\sqrt{2}} \approx 1431. \]
Thus, for sufficiently large \( n \),
\[ 1 + n\sqrt{2} \in T_2 \cap (2024, \infty). \]
(C is True).
(D) For any \( a, b \in \mathbb{Z} \), consider:
\[ \cos(\pi(a + b\sqrt{2})) + i\sin(\pi(a + b\sqrt{2})) = e^{i\pi(a+b\sqrt{2})}. \]
This value lies in \( \mathbb{Z} \) if and only if:
\[ e^{i\pi(a+b\sqrt{2})} = \pm1. \] \[ \Rightarrow \pi(a + b\sqrt{2}) = k\pi, \quad k \in \mathbb{Z}. \] \[ \Rightarrow a + b\sqrt{2} = k. \]
Since \( \sqrt{2} \) is irrational, this implies \( b = 0 \), which is a necessary condition.
(D is True).
Final Answer:
\[ (A, C, D) \]
Find the approximate value of (25.2)1/2.