To determine which properties the relation \( R = \{ (A, B): A \cap B \neq \emptyset \} \) holds, we need to test it for reflexivity, symmetry, and transitivity.
Given these analyses, the relation is symmetric only.
Thus, the correct answer is:
symmetric only
Let’s analyze the properties of the relation \(R\).
Step 1. Reflexivity: For reflexivity to hold, each subset \( A \) in \( M \) should satisfy \( A \cap A \neq \emptyset \). Since \( A \cap A = A \), \( R \) would be reflexive if \( A \neq \emptyset \) for every \( A \in M \). However, the empty set \( \emptyset \in M \) does not satisfy \( \emptyset \cap \emptyset \neq \emptyset \), so \( R \) is not reflexive.
Step 2. Symmetry: If \( (A, B) \in R \), then \( A \cap B \neq \emptyset \). This implies \( B \cap A \neq \emptyset \), so \( (B, A) \in R \). Therefore, \( R \) is symmetric.
Step 3. Transitivity: Suppose \( (A, B) \in R \) and \( (B, C) \in R \), meaning \( A \cap B \neq \emptyset \) and \( B \cap C \neq \emptyset \). However, \( A \cap C \) may still be empty, so \( R \) is not transitive.
Thus, the relation \( R \) is symmetric only.
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: