To determine which properties the relation \( R = \{ (A, B): A \cap B \neq \emptyset \} \) holds, we need to test it for reflexivity, symmetry, and transitivity.
Given these analyses, the relation is symmetric only.
Thus, the correct answer is:
symmetric only
Let’s analyze the properties of the relation \(R\).
Step 1. Reflexivity: For reflexivity to hold, each subset \( A \) in \( M \) should satisfy \( A \cap A \neq \emptyset \). Since \( A \cap A = A \), \( R \) would be reflexive if \( A \neq \emptyset \) for every \( A \in M \). However, the empty set \( \emptyset \in M \) does not satisfy \( \emptyset \cap \emptyset \neq \emptyset \), so \( R \) is not reflexive.
Step 2. Symmetry: If \( (A, B) \in R \), then \( A \cap B \neq \emptyset \). This implies \( B \cap A \neq \emptyset \), so \( (B, A) \in R \). Therefore, \( R \) is symmetric.
Step 3. Transitivity: Suppose \( (A, B) \in R \) and \( (B, C) \in R \), meaning \( A \cap B \neq \emptyset \) and \( B \cap C \neq \emptyset \). However, \( A \cap C \) may still be empty, so \( R \) is not transitive.
Thus, the relation \( R \) is symmetric only.
Let \[ A = \{x : |x^2 - 10| \le 6\} \quad \text{and} \quad B = \{x : |x - 2| > 1\}. \] Then
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to