Let’s analyze the properties of the relation \(R\).
Step 1. Reflexivity: For reflexivity to hold, each subset \( A \) in \( M \) should satisfy \( A \cap A \neq \emptyset \). Since \( A \cap A = A \), \( R \) would be reflexive if \( A \neq \emptyset \) for every \( A \in M \). However, the empty set \( \emptyset \in M \) does not satisfy \( \emptyset \cap \emptyset \neq \emptyset \), so \( R \) is not reflexive.
Step 2. Symmetry: If \( (A, B) \in R \), then \( A \cap B \neq \emptyset \). This implies \( B \cap A \neq \emptyset \), so \( (B, A) \in R \). Therefore, \( R \) is symmetric.
Step 3. Transitivity: Suppose \( (A, B) \in R \) and \( (B, C) \in R \), meaning \( A \cap B \neq \emptyset \) and \( B \cap C \neq \emptyset \). However, \( A \cap C \) may still be empty, so \( R \) is not transitive.
Thus, the relation \( R \) is symmetric only.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)