The determinant \( |R| \) can be equal to zero in the following cases:
If two of the values \( a, b, c, d \) are zero, there are 4 possible pairs: (a and b), (b and d), (d and c), or (c and a). Each case can occur in \( 7^2 \) ways, so the total number of such cases is:
\(4 \times 7^2 = 196\)
If any three of the values \( a, b, c, d \) are zero, the number of such cases is given by the combination \( \binom{4}{3} \times 7 \), which is:
\(\binom{4}{3} \times 7 = 28\)
If all four values \( a, b, c, d \) are zero, there is only 1 such case:
\(1\)
If all four values \( a, b, c, d \) are non-zero and the same, there are 7 possible values for them:
\(7\)
If two values are alike and the other two are alike, there are \( \binom{7}{2} \times 2 \times 2 \) such cases. This gives:
\(\binom{7}{2} \times 2 \times 2 = 84\)
The total number of invertible matrices is given by the total number of cases minus the non-invertible cases:
\(84 - 196 - 28 - 1 - 7 - 84 = 3780\)
Thus, the number of invertible matrices is 3780.
Let the position vectors of the points P, Q, R and S be
\(\vec{a}=\hat{i}+2\hat{j}-5\hat{k}\), \(\vec{b}=3\hat{i}+6\hat{j}+3\hat{k}\), \(\vec{c}=\frac{17}{5}\hat{i}+\frac{16}{5}\hat{j}+7\hat{k}\) and \(\vec{d}=2\hat{i}+\hat{j}+\hat{k}\)
respectively. Then which of the following statements is true?
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
The graph of a linear inequality in one variable is a number line. We can use an open circle for < and > and a closed circle for ≤ and ≥.

Inequalities that have the same solution are commonly known as equivalents. There are several properties of inequalities as well as the properties of equality. All the properties below are also true for inequalities including ≥ and ≤.
The addition property of inequality says that adding the same number to each side of the inequality gives an equivalent inequality.
If x>y, then x+z>y+z If x>y, then x+z>y+z
If x<y, then x+z<y+z If x<y, then x+z<y+z
The subtraction property of inequality tells us that subtracting the same number from both sides of an inequality produces an equivalent inequality.
If x>y, then x−z>y−z If x>y, then x−z>y−z
If x<y, then x−z<y−z Ifx<y, then x−z<y−z
The multiplication property of inequality tells us that multiplication on both sides of an inequality with a positive number gives an equivalent inequality.
If x>y and z>0, then xz>yz If x>y and z>0, then xz>yz
If x<y and z>0, then xz<yz If x<y and z>0,then xz<yz