Concept:
The image of a point in a line is obtained by reflecting the point about the line.
If \( H \) is the foot of the perpendicular from \( P \) onto the line, then the image point is
\[
Q = 2H - P.
\]
The distance of a point from a line is given by:
\[
\text{Distance}=\frac{|\vec{BP}\times\vec{d}|}{|\vec{d}|},
\]
where \( \vec{d} \) is the direction vector of the line and \( B \) is any point on the line.
Step 1: Line of reflection
Given line:
\[
\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-1}{1}
\]
A point on the line:
\[
A(1,2,1)
\]
Direction vector:
\[
\vec{d}_1=(1,2,1)
\]
Step 2: Foot of perpendicular from \( P \) onto the line
\[
\vec{AP}=(3-1,\,2-2,\,1-1)=(2,0,0)
\]
Parameter of projection:
\[
t=\frac{\vec{AP}\cdot\vec{d}_1}{|\vec{d}_1|^2}
=\frac{2}{1^2+2^2+1^2}
=\frac{2}{6}=\frac{1}{3}
\]
Thus,
\[
H=A+t\vec{d}_1
=\left(1+\frac{1}{3},\,2+\frac{2}{3},\,1+\frac{1}{3}\right)
=\left(\frac{4}{3},\frac{8}{3},\frac{4}{3}\right)
\]
Step 3: Image point \( Q \)
\[
Q=2H-P
\]
\[
Q=\left(\frac{8}{3}-3,\,\frac{16}{3}-2,\,\frac{8}{3}-1\right)
=\left(-\frac{1}{3},\,\frac{10}{3},\,\frac{5}{3}\right)
\]
Step 4: Distance of \( Q \) from the second line
Second line:
\[
\frac{x-9}{3}=\frac{y-9}{2}=\frac{z-5}{-2}
\]
Point on line:
\[
B(9,9,5)
\]
Direction vector:
\[
\vec{d}_2=(3,2,-2)
\]
Vector:
\[
\vec{BQ}=Q-B=\left(-\frac{28}{3},-\frac{17}{3},-\frac{10}{3}\right)
\]
Step 5: Compute distance
\[
\vec{BQ}\times\vec{d}_2=
\begin{vmatrix}
\hat{i}&\hat{j}&\hat{k} \\
-28 & -17 & -10 \\
3 & 2 & -2
\end{vmatrix}
=14\hat{i}-86\hat{j}-5\hat{k}
\]
\[
|\vec{BQ}\times\vec{d}_2|
=\sqrt{14^2+86^2+5^2}
=\sqrt{7617}
\]
Since \( \vec{BQ} \) was scaled by \( 3 \), actual magnitude:
\[
|\vec{BQ}\times\vec{d}_2|=\frac{\sqrt{7617}}{3}
\]
\[
|\vec{d}_2|=\sqrt{3^2+2^2+(-2)^2}=\sqrt{17}
\]
\[
\text{Distance}=\frac{\sqrt{7617}}{3\sqrt{17}}\approx 7
\]
Final Answer:
\[
\boxed{7}
\]