Step 1: Data from the problem
A point on the given line:
\[
A(4,0,-1)
\]
Direction vector of the line:
\[
\vec d_1=(2,0,3)
\]
Direction along which distance is measured:
\[
\vec d_2=(3,-1,0),\quad |\vec d_2|=\sqrt{10}
\]
Point:
\[
P(4\alpha,\alpha,\beta)
\]
Step 2: Vector joining line to point
\[
\vec{AP}=(4\alpha-4,\alpha,\beta+1)
\]
Distance along \( \vec d_2 \):
\[
\frac{|\vec{AP}\cdot \vec d_2|}{|\vec d_2|}
=\frac{13}{\sqrt{10}}
\Rightarrow
|\vec{AP}\cdot \vec d_2|=13
\]
\[
|(4\alpha-4)3+\alpha(-1)|=13
\Rightarrow |11\alpha-12|=13
\]
Since \( \beta<0 \),
\[
11\alpha-12=-13 \Rightarrow \alpha=-\frac{1}{11}
\]
Step 3: Perpendicularity condition
\[
\vec{AP}\cdot\vec d_1=0
\]
\[
(4\alpha-4)2+(\beta+1)3=0
\]
Substitute \( \alpha=-\frac{1}{11} \):
\[
\beta=-\frac{17}{11}
\]
Step 4: Required value
\[
\alpha^2+\beta^2=\frac{1}{121}+\frac{289}{121}
=\frac{290}{121}
\]
Final Answer:
\[
\boxed{\dfrac{290}{121}}
\]