Use external division formula:
\[
P = \left( \frac{m x_2 - n x_1}{m - n}, \frac{m y_2 - n y_1}{m - n}, \frac{m z_2 - n z_1}{m - n} \right)
\]
Let \( A = (1, 2, -1),\ B = (-1, 0, 1),\ m:n = 1:2 \)
Then,
\[
P = \left( \frac{1 \cdot (-1) - 2 \cdot 1}{1 - 2}, \frac{1 \cdot 0 - 2 \cdot 2}{1 - 2}, \frac{1 \cdot 1 - 2 \cdot (-1)}{1 - 2} \right)
= \left( \frac{-1 - 2}{-1}, \frac{-4}{-1}, \frac{1 + 2}{-1} \right)
= (3, 4, -3)
\]
Point \( Q = (1, 3, -1) \)
Now,
\[
PQ = \sqrt{(3 - 1)^2 + (4 - 3)^2 + (-3 + 1)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = \boxed{3}
\]