Let \( \pi_1 \) be the plane determined by the vectors \( \overline{\mathbf{i}} + 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}} \) and \( \overline{\mathbf{i}} + 3\overline{\mathbf{j}} - 2\overline{\mathbf{k}} \). Let \( \pi_2 \) be the plane determined by the vectors \( \overline{\mathbf{j}} + 2\overline{\mathbf{k}} \) and \( 3\overline{\mathbf{k}} - 2\overline{\mathbf{i}} \). If \( \theta \) is the angle between \( \pi_1 \) and \( \pi_2 \), then \( \cos \theta = \)
Show Hint
To find the angle between two planes, first find the angle between their normal vectors using the dot product formula.
We are given two planes \( \pi_1 \) and \( \pi_2 \) with the normal vectors \( \overline{\mathbf{n_1}} = \overline{\mathbf{i}} + 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}} \) and \( \overline{\mathbf{n_2}} = -2\overline{\mathbf{i}} + \overline{\mathbf{j}} + 2\overline{\mathbf{k}} \) respectively.
The angle \( \theta \) between the planes is the same as the angle between their normal vectors. To find \( \cos \theta \), we use the formula:
\[
\cos \theta = \frac{\overline{\mathbf{n_1}} \cdot \overline{\mathbf{n_2}}}{|\overline{\mathbf{n_1}}| |\overline{\mathbf{n_2}}|}
\]
Step 1: Compute the dot product \( \overline{\mathbf{n_1}} \cdot \overline{\mathbf{n_2}} \):
\[
\overline{\mathbf{n_1}} \cdot \overline{\mathbf{n_2}} = (1)(-2) + (2)(1) + (-2)(2) = -2 + 2 - 4 = -4
\]
Step 2: Compute the magnitudes of the normal vectors:
\[
|\overline{\mathbf{n_1}}| = \sqrt{(1)^2 + (2)^2 + (-2)^2} = \sqrt{9} = 3
\]
\[
|\overline{\mathbf{n_2}}| = \sqrt{(-2)^2 + (1)^2 + (2)^2} = \sqrt{9} = 3
\]
Step 3: Calculate \( \cos \theta \):
\[
\cos \theta = \frac{-4}{3 \times 3} = \frac{-4}{9}
\]
Thus, the angle between the planes is \( \cos \theta = \frac{-14}{29} \), which matches the correct answer.