Question:

Let \( P = \{ z \in \mathbb{C} : |z + 2 - 3i| \leq 1 \} \) and \( Q = \{ z \in \mathbb{C} : z(1 + i) + \overline{z}(1 - i) \leq -8 \} \).
Let \( z \) in \( P \cap Q \) have \( |z - 3 + 2i| \) be maximum and minimum at \( z_1 \) and \( z_2 \), respectively.  
If \( |z_1|^2 + 2|z_2|^2 = \alpha + \beta \sqrt{2} \), where \( \alpha \) and \( \beta \) are integers, then \( \alpha + \beta \) equals ____.

Updated On: Mar 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 36

Solution and Explanation

The correct answer is
Was this answer helpful?
0
0

Top Questions on limits and derivatives

View More Questions