Question:

Let \( P = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \) and \( Q = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \). Then the value of \( \text{trace}(P^5 + Q^4) \) equals:

Show Hint

To compute the trace of matrix powers, first calculate the matrix powers and then sum the diagonal elements. The trace function is linear, so you can separate the trace of the sum of matrices.
Updated On: Jan 30, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 341

Solution and Explanation

Step 1: Trace of a Matrix
Recall that the trace of a matrix is the sum of its diagonal elements. The trace function is linear, so: \[ \text{trace}(P^5 + Q^4) = \text{trace}(P^5) + \text{trace}(Q^4). \] Step 2: Calculating \( \text{trace}(P^5) \)
First, we compute the successive powers of \( P \): \[ P^2 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}. \] \[ P^3 = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 14 & 13 \\ 13 & 14 \end{pmatrix}. \] \[ P^4 = \begin{pmatrix} 14 & 13 \\ 13 & 14 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 39 & 41 \\ 41 & 39 \end{pmatrix}. \] \[ P^5 = \begin{pmatrix} 39 & 41 \\ 41 & 39 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 119 & 119 \\ 119 & 119 \end{pmatrix}. \] Thus, \[ \text{trace}(P^5) = 119 + 119 = 238. \] Step 3: Calculating \( \text{trace}(Q^4) \)
Now compute the powers of \( Q \): \[ Q^2 = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -1 & 5 \\ -6 & 15 \end{pmatrix}. \] \[ Q^3 = \begin{pmatrix} -1 & 5 \\ -6 & 15 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -11 & 29 \\ -24 & 60 \end{pmatrix}. \] \[ Q^4 = \begin{pmatrix} -11 & 29 \\ -24 & 60 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -59 & 147 \\ -120 & 300 \end{pmatrix}. \] Hence, \[ \text{trace}(Q^4) = -59 + 300 = 241. \] Step 4: Final Calculation
\[ \text{trace}(P^5 + Q^4) = 238 + 241 = 479. \] Final Answer:
\[ \boxed{479} \]
Was this answer helpful?
0
0

Top Questions on Matrix Operations

View More Questions

Questions Asked in GATE ST exam

View More Questions