Question:

Let \( P(3, 2, 3) \), \( Q(4, 6, 2) \), and \( R(7, 3, 2) \) be the vertices of \( \triangle PQR \). Then, the angle \( \angle QPR \) is

Updated On: Nov 14, 2024
  • \( \frac{\pi}{6} \)
  • \( \cos^{-1} \left( \frac{7}{18} \right) \)
  • \( \cos^{-1} \left( \frac{1}{18} \right) \)
  • \( \frac{\pi}{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Solution: To find the angle ∠QPR, we calculate the direction ratios of PR and PQ.

Step 1. Direction Ratio of PR:  
  PR = (7 − 3, 3 − 2, 2 − 3) = (4, 1, −1)

Step 2. Direction Ratio of PQ:
  PQ = (4 − 3, 6 − 2, 2 − 3) = (1, 4, −1)

Step 3. Calculating cosθ:
  \(\cosθ = \frac{4·1 + 1·4 + (−1)·(−1)}{\sqrt{18}·\sqrt{18}} = \frac{4 + 4 + 1}{18} = \frac{9}{18} = \frac{1}{2}\)
Step 4. Therefore:

  \(θ = \cos⁻¹\left(\frac{1}{2}\right) = \frac{π}{3}\)

The Correct Answer is:\( \frac{π}{3} \)

Was this answer helpful?
0
0