Solution: To find the angle ∠QPR, we calculate the direction ratios of PR and PQ.
Step 1. Direction Ratio of PR:
PR = (7 − 3, 3 − 2, 2 − 3) = (4, 1, −1)
Step 2. Direction Ratio of PQ:
PQ = (4 − 3, 6 − 2, 2 − 3) = (1, 4, −1)
Step 3. Calculating cosθ:
\(\cosθ = \frac{4·1 + 1·4 + (−1)·(−1)}{\sqrt{18}·\sqrt{18}} = \frac{4 + 4 + 1}{18} = \frac{9}{18} = \frac{1}{2}\)
Step 4. Therefore:
\(θ = \cos⁻¹\left(\frac{1}{2}\right) = \frac{π}{3}\)
The Correct Answer is:\( \frac{π}{3} \)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: