Question:

Let \( \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \) be three unit vectors. Let \( \overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} \), \( \overrightarrow{q} = \overrightarrow{u} \times (\overrightarrow{p} \times \overrightarrow{w}) \). If \( \overrightarrow{p} \cdot \overrightarrow{u} = \frac{3}{2} \), \( \overrightarrow{p} \cdot \overrightarrow{v} = \frac{7}{4} \), \( |\overrightarrow{p}| = 2 \), and \( \overrightarrow{v} = K \overrightarrow{q} \), then \( K = ? \)

Show Hint

When solving vector equations, use the given dot product values and apply fundamental vector identities like the dot product and triple product expansion. This simplifies finding unknown scalar factors.
Updated On: Mar 25, 2025
  • \( -1 \)
  • \( 2 \)
  • \( 3 \)
  • \( -2 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the unit vectors \( \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \) and the equations: \[ \overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} \] \[ \overrightarrow{q} = \overrightarrow{u} \times (\overrightarrow{p} \times \overrightarrow{w}) \] \[ \overrightarrow{p} \cdot \overrightarrow{u} = \frac{3}{2}, \quad \overrightarrow{p} \cdot \overrightarrow{v} = \frac{7}{4}, \quad |\overrightarrow{p}| = 2 \] \[ \overrightarrow{v} = K \overrightarrow{q} \] Step 1: Analyze the Given Conditions
We know that \( \overrightarrow{p} \cdot \overrightarrow{p} = |\overrightarrow{p}|^2 \), so: \[ \overrightarrow{p} \cdot \overrightarrow{p} = 4 \] Expanding: \[ (\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) \cdot (\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) = 4 \] Expanding using dot product properties: \[ |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + |\overrightarrow{w}|^2 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 4 \] Since \( \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \) are unit vectors: \[ 1 + 1 + 1 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 4 \] \[ 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 1 \] Step 2: Solve for \( K \)
Using the equation \( \overrightarrow{v} = K \overrightarrow{q} \), we equate the known dot product results: \[ \overrightarrow{p} \cdot \overrightarrow{v} = K \overrightarrow{p} \cdot \overrightarrow{q} \] Substituting the given values: \[ \frac{7}{4} = K \cdot \frac{7}{4} \] Solving for \( K \): \[ K = 2 \]
Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions