We are given the unit vectors \( \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \) and the equations:
\[
\overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}
\]
\[
\overrightarrow{q} = \overrightarrow{u} \times (\overrightarrow{p} \times \overrightarrow{w})
\]
\[
\overrightarrow{p} \cdot \overrightarrow{u} = \frac{3}{2}, \quad \overrightarrow{p} \cdot \overrightarrow{v} = \frac{7}{4}, \quad |\overrightarrow{p}| = 2
\]
\[
\overrightarrow{v} = K \overrightarrow{q}
\]
Step 1: Analyze the Given Conditions
We know that \( \overrightarrow{p} \cdot \overrightarrow{p} = |\overrightarrow{p}|^2 \), so:
\[
\overrightarrow{p} \cdot \overrightarrow{p} = 4
\]
Expanding:
\[
(\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) \cdot (\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) = 4
\]
Expanding using dot product properties:
\[
|\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + |\overrightarrow{w}|^2 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 4
\]
Since \( \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \) are unit vectors:
\[
1 + 1 + 1 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 4
\]
\[
2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 1
\]
Step 2: Solve for \( K \)
Using the equation \( \overrightarrow{v} = K \overrightarrow{q} \), we equate the known dot product results:
\[
\overrightarrow{p} \cdot \overrightarrow{v} = K \overrightarrow{p} \cdot \overrightarrow{q}
\]
Substituting the given values:
\[
\frac{7}{4} = K \cdot \frac{7}{4}
\]
Solving for \( K \):
\[
K = 2
\]