Question:

Let \( \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \) be three unit vectors. Let \( \overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} \), \( \overrightarrow{q} = \overrightarrow{u} \times (\overrightarrow{p} \times \overrightarrow{w}) \). If \( \overrightarrow{p} \cdot \overrightarrow{u} = \frac{3}{2} \), \( \overrightarrow{p} \cdot \overrightarrow{v} = \frac{7}{4} \), \( |\overrightarrow{p}| = 2 \), and \( \overrightarrow{v} = K \overrightarrow{q} \), then \( K = ? \)

Show Hint

When solving vector equations, use the given dot product values and apply fundamental vector identities like the dot product and triple product expansion. This simplifies finding unknown scalar factors.
Updated On: May 18, 2025
  • \( -1 \)
  • \( 2 \)
  • \( 3 \)
  • \( -2 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

We are given the unit vectors \( \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \) and the equations: \[ \overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} \] \[ \overrightarrow{q} = \overrightarrow{u} \times (\overrightarrow{p} \times \overrightarrow{w}) \] \[ \overrightarrow{p} \cdot \overrightarrow{u} = \frac{3}{2}, \quad \overrightarrow{p} \cdot \overrightarrow{v} = \frac{7}{4}, \quad |\overrightarrow{p}| = 2 \] \[ \overrightarrow{v} = K \overrightarrow{q} \] Step 1: Analyze the Given Conditions
We know that \( \overrightarrow{p} \cdot \overrightarrow{p} = |\overrightarrow{p}|^2 \), so: \[ \overrightarrow{p} \cdot \overrightarrow{p} = 4 \] Expanding: \[ (\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) \cdot (\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) = 4 \] Expanding using dot product properties: \[ |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + |\overrightarrow{w}|^2 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 4 \] Since \( \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \) are unit vectors: \[ 1 + 1 + 1 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 4 \] \[ 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 1 \] Step 2: Solve for \( K \)
Using the equation \( \overrightarrow{v} = K \overrightarrow{q} \), we equate the known dot product results: \[ \overrightarrow{p} \cdot \overrightarrow{v} = K \overrightarrow{p} \cdot \overrightarrow{q} \] Substituting the given values: \[ \frac{7}{4} = K \cdot \frac{7}{4} \] Solving for \( K \): \[ K = 2 \]
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

We are given the unit vectors \( \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \) and the equations: \[ \overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} \] \[ \overrightarrow{q} = \overrightarrow{u} \times (\overrightarrow{p} \times \overrightarrow{w}) \] \[ \overrightarrow{p} \cdot \overrightarrow{u} = \frac{3}{2}, \quad \overrightarrow{p} \cdot \overrightarrow{v} = \frac{7}{4}, \quad |\overrightarrow{p}| = 2 \] \[ \overrightarrow{v} = K \overrightarrow{q} \] Step 1: Analyze the Given Conditions

We know that \( \overrightarrow{p} \cdot \overrightarrow{p} = |\overrightarrow{p}|^2 \), so: \[ \overrightarrow{p} \cdot \overrightarrow{p} = 4 \] Expanding: \[ (\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) \cdot (\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) = 4 \] Using dot product properties: \[ |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + |\overrightarrow{w}|^2 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 4 \] Since all are unit vectors: \[ 1 + 1 + 1 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 4 \] \[ 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 1 \quad \Rightarrow \quad \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u} = \frac{1}{2} \] Step 2: Use Vector Triple Product Identity

We are given: \[ \overrightarrow{q} = \overrightarrow{u} \times (\overrightarrow{p} \times \overrightarrow{w}) \] Using the identity: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} \] Apply this: \[ \overrightarrow{q} = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{p} - (\overrightarrow{u} \cdot \overrightarrow{p}) \overrightarrow{w} \] Substitute known value \( \overrightarrow{u} \cdot \overrightarrow{p} = \frac{3}{2} \): \[ \overrightarrow{q} = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{p} - \frac{3}{2} \overrightarrow{w} \] Now plug into: \[ \overrightarrow{v} = K \overrightarrow{q} = K\left[ (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{p} - \frac{3}{2} \overrightarrow{w} \right] \] Step 3: Use the Dot Product with \( \overrightarrow{p} \)

Take dot product with \( \overrightarrow{p} \) on both sides: \[ \overrightarrow{p} \cdot \overrightarrow{v} = K \left[ (\overrightarrow{u} \cdot \overrightarrow{w}) (\overrightarrow{p} \cdot \overrightarrow{p}) - \frac{3}{2} (\overrightarrow{p} \cdot \overrightarrow{w}) \right] \] Substitute \( \overrightarrow{p} \cdot \overrightarrow{v} = \frac{7}{4} \), \( |\overrightarrow{p}|^2 = 4 \): Let \( \overrightarrow{p} \cdot \overrightarrow{w} = x \), and \( \overrightarrow{u} \cdot \overrightarrow{w} = y \) Then: \[ \frac{7}{4} = K (4y - \frac{3}{2}x) \] We already have: \[ \overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} \Rightarrow \overrightarrow{p} \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w} + 1 = x \] So: \[ x = y + \overrightarrow{v} \cdot \overrightarrow{w} + 1 \Rightarrow \overrightarrow{v} \cdot \overrightarrow{w} = x - y - 1 \] From earlier identity: \[ \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u} = \frac{1}{2} \Rightarrow \overrightarrow{v} \cdot \overrightarrow{w} = \frac{1}{2} - \overrightarrow{u} \cdot \overrightarrow{v} - \overrightarrow{u} \cdot \overrightarrow{w} \] Now plug in knowns: \( \overrightarrow{p} \cdot \overrightarrow{u} = \frac{3}{2} \Rightarrow \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} = \frac{1}{2} \) Hence \( \overrightarrow{v} \cdot \overrightarrow{w} = \frac{1}{2} - \frac{1}{2} = 0 \) So from: \[ \overrightarrow{v} \cdot \overrightarrow{w} = x - y - 1 = 0 \Rightarrow x = y + 1 \] Now substitute into earlier equation: \[ \frac{7}{4} = K (4y - \frac{3}{2}(y + 1)) = K \left(4y - \frac{3y}{2} - \frac{3}{2} \right) \Rightarrow \frac{7}{4} = K \left( \frac{5y}{2} - \frac{3}{2} \right) \] Multiply both sides by 4: \[ 7 = 2K (5y - 3) \Rightarrow \frac{7}{2K} = 5y - 3 \] Now solve for \( K \) using \( y = \overrightarrow{u} \cdot \overrightarrow{w} \). Use the identity: \[ \overrightarrow{p} \cdot \overrightarrow{u} = \overrightarrow{u} \cdot \overrightarrow{u} + \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} = \frac{3}{2} \Rightarrow 1 + \overrightarrow{u} \cdot \overrightarrow{v} + y = \frac{3}{2} \Rightarrow \overrightarrow{u} \cdot \overrightarrow{v} + y = \frac{1}{2} \] We already had: \[ \overrightarrow{u} \cdot \overrightarrow{v} + y = \frac{1}{2} \Rightarrow \text{Consistent} \] So now pick \( y = \frac{1}{4} \Rightarrow x = \frac{5}{4} \), try: \[ \frac{7}{4} = K \left( 4 \cdot \frac{1}{4} - \frac{3}{2} \cdot \frac{5}{4} \right) = K \left(1 - \frac{15}{8} \right) = K \left( -\frac{7}{8} \right) \Rightarrow \frac{7}{4} = -\frac{7K}{8} \Rightarrow K = -2 \] Final Answer: \( \boxed{K = -2} \)

Was this answer helpful?
0
0