We are given the vector equations: \[ \alpha \overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \] \[ \beta \overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} \] Step 1: Add the two given equations
Adding both equations, we get: \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) + (\overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}) \] \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = \overrightarrow{a} + \overrightarrow{d} + 2(\overrightarrow{b} + \overrightarrow{c}) \] Step 2: Rearrange and isolate vectors
Rearranging, we have: \[ (\alpha - 1) \overrightarrow{d} + (\beta - 1) \overrightarrow{a} = 2(\overrightarrow{b} + \overrightarrow{c}) \] Since \(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}\) are non-coplanar vectors, this equation implies the right side must be expressible as a linear combination of \(\overrightarrow{a}\) and \(\overrightarrow{d}\).
Step 3: Use non-coplanarity to find the sum
For this to hold, the only possibility is: \[ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} = \vec{0} \] Therefore, the magnitude of the sum is: \[ |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}| = 0 \]
X, Y are oxoacids of phosphorous. The number of P – OH bonds in X, Y respectively is: