Question:

Let \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \) be non-coplanar vectors. If \( \alpha \overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \), \( \beta \overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} \), then \( | \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} | = ? \)

Show Hint

When solving vector equations, check whether given vectors sum to zero. If the given system ensures that the vectors cancel out, then their resultant magnitude is zero.
Updated On: May 18, 2025
  • \( 1 \)
  • \( 2 \)
  • \( |\overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c} | \)
  • \( 0 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Approach Solution - 1

We are given the vector equations: \[ \alpha \overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \] \[ \beta \overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} \] Step 1: Express the sum of given vectors
Adding both equations: \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) + (\overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}) \] \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} \] \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = \overrightarrow{a} + \overrightarrow{d} + 2(\overrightarrow{b} + \overrightarrow{c}) \] Step 2: Finding the modulus
Since the given vectors are non-coplanar, their sum must satisfy: \[ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} = 0 \] Thus, the magnitude is: \[ | \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} | = 0 \]
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

We are given the vector equations: \[ \alpha \overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \] \[ \beta \overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} \] Step 1: Add the two given equations 

Adding both equations, we get: \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) + (\overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}) \] \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = \overrightarrow{a} + \overrightarrow{d} + 2(\overrightarrow{b} + \overrightarrow{c}) \] Step 2: Rearrange and isolate vectors 

Rearranging, we have: \[ (\alpha - 1) \overrightarrow{d} + (\beta - 1) \overrightarrow{a} = 2(\overrightarrow{b} + \overrightarrow{c}) \] Since \(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}\) are non-coplanar vectors, this equation implies the right side must be expressible as a linear combination of \(\overrightarrow{a}\) and \(\overrightarrow{d}\). 
Step 3: Use non-coplanarity to find the sum 

For this to hold, the only possibility is: \[ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} = \vec{0} \] Therefore, the magnitude of the sum is: \[ |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}| = 0 \]

Was this answer helpful?
0
0