Question:

Let \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \) be non-coplanar vectors. If \( \alpha \overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \), \( \beta \overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} \), then \( | \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} | = ? \)

Show Hint

When solving vector equations, check whether given vectors sum to zero. If the given system ensures that the vectors cancel out, then their resultant magnitude is zero.
Updated On: Mar 25, 2025
  • \( 1 \)
  • \( 2 \)
  • \( |\overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c} | \)
  • \( 0 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given the vector equations: \[ \alpha \overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \] \[ \beta \overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} \] Step 1: Express the sum of given vectors
Adding both equations: \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) + (\overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}) \] \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} \] \[ \alpha \overrightarrow{d} + \beta \overrightarrow{a} = \overrightarrow{a} + \overrightarrow{d} + 2(\overrightarrow{b} + \overrightarrow{c}) \] Step 2: Finding the modulus
Since the given vectors are non-coplanar, their sum must satisfy: \[ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} = 0 \] Thus, the magnitude is: \[ | \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} | = 0 \]
Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions