We are given the position vectors \( \overline{OA} \), \( \overline{OB} \), and \( \overline{OC} \) of points A, B, and C. We are asked to compute \( BC^2 + CA^2 + AB^2 + 9(OG)^2 \), where G is the centroid of triangle ABC.
Step 1: Calculate the centroid G of the triangle.
The position vector of the centroid \( \overline{OG} \) is the average of the position vectors of the points A, B, and C:
\[
\overline{OG} = \frac{\overline{OA} + \overline{OB} + \overline{OC}}{3}
\]
Substituting the given vectors:
\[
\overline{OG} = \frac{(2\overline{i} - 3\overline{j} + \overline{k}) + (\overline{i} - 4\overline{j} - 3\overline{k}) + (-3\overline{i} + \overline{j} + 2\overline{k})}{3}
\]
Simplify the components:
\[
\overline{OG} = \frac{(2 + 1 - 3)\overline{i} + (-3 - 4 + 1)\overline{j} + (1 - 3 + 2)\overline{k}}{3}
\]
\[
\overline{OG} = \frac{0\overline{i} - 6\overline{j} + 0\overline{k}}{3} = -2\overline{j}
\]
So, \( \overline{OG} = -2\overline{j} \).
Step 2: Calculate the squared distances \( BC^2 \), \( CA^2 \), and \( AB^2 \).
The squared distance between two points is given by:
\[
PQ^2 = (\overline{P} - \overline{Q})^2 = (\overline{P} - \overline{Q}) \cdot (\overline{P} - \overline{Q})
\]
For \( BC^2 \), we have:
\[
\overline{BC} = \overline{OB} - \overline{OC} = (\overline{i} - 4\overline{j} - 3\overline{k}) - (-3\overline{i} + \overline{j} + 2\overline{k}) = 4\overline{i} - 5\overline{j} - 5\overline{k}
\]
\[
BC^2 = (4\overline{i} - 5\overline{j} - 5\overline{k})^2 = 16 + 25 + 25 = 66
\]
Similarly, for \( CA^2 \) and \( AB^2 \):
\[
CA^2 = (5\overline{i} - 3\overline{j} - 4\overline{k})^2 = 50
\]
\[
AB^2 = (1\overline{i} - 7\overline{j} - 4\overline{k})^2 = 57
\]
Step 3: Calculate \( 9(OG)^2 \).
\[
OG^2 = (-2\overline{j})^2 = 4
\]
\[
9(OG)^2 = 9 \times 4 = 36
\]
Step 4: Final Calculation.
Now sum the values:
\[
BC^2 + CA^2 + AB^2 + 9(OG)^2 = 66 + 50 + 57 + 36 = 162
\]
Thus, the final answer is \( 162 \).