Question:

Let mean and variance of the data 1, 2, 4, 5, x, y are 5 and 10 then the mean deviation about mean is?

Updated On: Jan 13, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The mean of the numbers \(1, 2, 4, 5, x, y\) is 5, and the variance is 10. 

Step 1: Calculate the mean

The formula for the mean is: \[ \text{Mean} = \frac{\text{Sum of all values}}{\text{Number of values}}. \] Substituting the given values: \[ \frac{1 + 2 + 4 + 5 + x + y}{6} = 5. \] Simplify: \[ \frac{12 + x + y}{6} = 5 \implies 12 + x + y = 30 \implies x + y = 18. \]

Step 2: Use the formula for variance

The formula for variance is: \[ \text{Variance} = \frac{\text{Sum of squares of values}}{\text{Number of values}} - (\text{Mean})^2. \] Substituting the given variance \(10\) and mean \(5\): \[ \frac{1^2 + 2^2 + 4^2 + 5^2 + x^2 + y^2}{6} - 5^2 = 10. \] Simplify: \[ \frac{1 + 4 + 16 + 25 + x^2 + y^2}{6} - 25 = 10. \] \[ \frac{46 + x^2 + y^2}{6} - 25 = 10 \implies \frac{46 + x^2 + y^2}{6} = 35. \] Multiply through by 6: \[ 46 + x^2 + y^2 = 210 \implies x^2 + y^2 = 164. \]

Step 3: Solve for \(x\) and \(y\)

We are given: \[ x + y = 18, \quad x^2 + y^2 = 164. \] Use the identity: \[ (x + y)^2 = x^2 + y^2 + 2xy. \] Substituting: \[ 18^2 = 164 + 2xy \implies 324 = 164 + 2xy \implies 2xy = 160 \implies xy = 80. \] The quadratic equation for \(x\) and \(y\) is: \[ t^2 - (x + y)t + xy = 0 \implies t^2 - 18t + 80 = 0. \] Solve using the quadratic formula: \[ t = \frac{-(-18) \pm \sqrt{(-18)^2 - 4(1)(80)}}{2(1)} = \frac{18 \pm \sqrt{324 - 320}}{2}. \] \[ t = \frac{18 \pm 2}{2} \implies t = 10 \text{ or } t = 8. \] Thus, \(x = 8\) and \(y = 10\) (or vice versa).

Step 4: Calculate the mean deviation

The formula for mean deviation is: \[ \text{Mean Deviation} = \frac{\sum |x_i - \bar{x}|}{\text{Number of values}}, \] where \(\bar{x}\) is the mean. Substituting the values: \[ \text{Mean Deviation} = \frac{|1 - 5| + |2 - 5| + |4 - 5| + |5 - 5| + |8 - 5| + |10 - 5|}{6}. \] Simplify: \[ \text{Mean Deviation} = \frac{4 + 3 + 1 + 0 + 3 + 5}{6} = \frac{16}{6} = \frac{8}{3}. \]

Final Answer:

The mean deviation is: \[ \frac{8}{3}. \]

Was this answer helpful?
1
0

Top Questions on Statistics

View More Questions

Concepts Used:

Mean Deviation

A statistical measure that is used to calculate the average deviation from the mean value of the given data set is called the mean deviation.

The Formula for Mean Deviation:

The mean deviation for the given data set is calculated as:

Mean Deviation = [Σ |X – µ|]/N

Where, 

  • Σ represents the addition of values
  • X represents each value in the data set
  • µ represents the mean of the data set
  • N represents the number of data values

Grouping of data is very much possible in two ways:

  1. Discrete Frequency Distribution
  2. Continuous Frequency Distribution