Let $ \mathbb{R} $ denote the set of all real numbers. Define the function $ f: \mathbb{R} \to \mathbb{R} $ by $$ f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \ne 0, \\ 2, & \text{if } x = 0. \end{cases} $$ Then which one of the following statements is TRUE?
\( x = 0 \) is a point of local minima of \( f \)
Step 1: Analyze continuity at \( x = 0 \) \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \left[2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right)\right] \] Since \( -1 \le \sin\left(\frac{1}{x}\right) \le 1 \), \[ - x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2 \Rightarrow -x^2 \le -x^2 \sin\left(\frac{1}{x}\right) \le x^2 \] \[ -2x^2 - x^2 \le f(x) - 2 \le -2x^2 + x^2 \Rightarrow -3x^2 \le f(x) - 2 \le -x^2 \Rightarrow \lim_{x \to 0} f(x) = 2 \] So, \( f \) is continuous at \( x = 0 \).
Step 2: Check differentiability at \( x = 0 \) Let’s analyze: \[ f(x) = 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right) \Rightarrow f'(x) = -4x - 2x \sin\left(\frac{1}{x}\right) + \cos\left(\frac{1}{x}\right) \] Here, \( \cos\left(\frac{1}{x}\right) \) oscillates as \( x \to 0 \) and does not converge. Hence, \( f \) is not differentiable at \( x = 0 \).
Step 3: Examine local extrema We check the behavior of \( f(x) \) around 0: \[ f(x) = 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right) \le 2 - x^2<2 = f(0) \Rightarrow f(x)<f(0) \text{ near } x = 0 \] So, \( x = 0 \) is actually a local maximum, not a local minimum.
Step 4: Monotonicity Due to the oscillatory term \( \sin\left(\frac{1}{x}\right) \), the function is not monotonic in any neighborhood around 0. This rules out both strict increasing and decreasing nature in any interval \( (-\delta, 0) \) or \( (0, \delta) \).
Thus, the true statement is:
(C) For any positive real number \( \delta \), the function \( f \) is NOT an increasing function on the interval \( (-\delta, 0) \)
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?