Let $ \mathbb{R} $ denote the set of all real numbers. Define the function $ f: \mathbb{R} \to \mathbb{R} $ by $$ f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \ne 0, \\ 2, & \text{if } x = 0. \end{cases} $$ Then which one of the following statements is TRUE?
\( x = 0 \) is a point of local minima of \( f \)
Step 1: Analyze continuity at \( x = 0 \) \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \left[2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right)\right] \] Since \( -1 \le \sin\left(\frac{1}{x}\right) \le 1 \), \[ - x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2 \Rightarrow -x^2 \le -x^2 \sin\left(\frac{1}{x}\right) \le x^2 \] \[ -2x^2 - x^2 \le f(x) - 2 \le -2x^2 + x^2 \Rightarrow -3x^2 \le f(x) - 2 \le -x^2 \Rightarrow \lim_{x \to 0} f(x) = 2 \] So, \( f \) is continuous at \( x = 0 \).
Step 2: Check differentiability at \( x = 0 \) Let’s analyze: \[ f(x) = 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right) \Rightarrow f'(x) = -4x - 2x \sin\left(\frac{1}{x}\right) + \cos\left(\frac{1}{x}\right) \] Here, \( \cos\left(\frac{1}{x}\right) \) oscillates as \( x \to 0 \) and does not converge. Hence, \( f \) is not differentiable at \( x = 0 \).
Step 3: Examine local extrema We check the behavior of \( f(x) \) around 0: \[ f(x) = 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right) \le 2 - x^2<2 = f(0) \Rightarrow f(x)<f(0) \text{ near } x = 0 \] So, \( x = 0 \) is actually a local maximum, not a local minimum.
Step 4: Monotonicity Due to the oscillatory term \( \sin\left(\frac{1}{x}\right) \), the function is not monotonic in any neighborhood around 0. This rules out both strict increasing and decreasing nature in any interval \( (-\delta, 0) \) or \( (0, \delta) \).
Thus, the true statement is:
(C) For any positive real number \( \delta \), the function \( f \) is NOT an increasing function on the interval \( (-\delta, 0) \)
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.