\( f \) is NOT one-one but \( f \) is onto
Step 1: Understand the given functions
Step 2: Analyze \( f(n) \)
Odd inputs: \( f(1) = 1, f(3) = 2, f(5) = 3 \Rightarrow f(2k-1) = k \Rightarrow \{1, 2, 3, \dots\} \)
Even inputs: \( f(2) = 1, f(4) = 0, f(6) = -1, f(8) = -2 \Rightarrow f(2k) = 2 - k \Rightarrow \{1, 0, -1, -2, \dots\} \)
Conclusion: \( f \) is onto \( \mathbb{Z} \), but not one-to-one (e.g., \( f(1) = f(2) = 1 \)).
Step 3: Analyze \( g(n) \)
\( n \geq 0 \Rightarrow g(n) = 3 + 2n \Rightarrow \{3, 5, 7, \dots\} \)
\( n < 0 \Rightarrow g(n) = -2n \Rightarrow \{2, 4, 6, \dots\} \)
Conclusion: \( g \) is one-to-one, but not onto \( \mathbb{N} \) (missing 1).
Step 4: Analyze \( g \circ f: \mathbb{N} \to \mathbb{N} \)
For odd \( n = 2k-1 \): \( f(n) = k \Rightarrow g(k) = 3 + 2k \) (odd \( \geq 5 \))
For even \( n = 2k \): \( f(n) = 2 - k \). Cases:
Conclusion: Range = \( \{2, 3, 4, 5, \dots\} = \mathbb{N} \setminus \{1\} \); Not onto and not one-to-one (e.g., \( (g \circ f)(1) = (g \circ f)(2) = 5 \)).
Step 5: Analyze \( f \circ g: \mathbb{Z} \to \mathbb{Z} \)
For \( n \geq 0 \): \( g(n) = 3 + 2n \) → odd → \( f(g(n)) = \frac{g(n)+1}{2} = 2 + n \)
For \( n < 0 \): \( g(n) = -2n \) → even → \( f(g(n)) = \frac{4 - (-2n)}{2} = 2 - n \)
Conclusion: Range = \( \mathbb{Z} \), one-to-one and onto.
Step 6: Evaluate Options
Final Answer: \( \boxed{\text{(A), (D)}} \)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?