Step 1: Recognize that determinant of a power is the power of the determinant.
\[
\det((8I - M)^3) = (\det(8I - M))^3.
\]
Step 2: Note that \( M \) is upper triangular.
So, \( \det(8I - M) = \prod_{i=1}^4 (8 - m_{ii}) = (8 - 9)(8 - 7)(8 - 11)(8 - 0). \)
Step 3: Simplify.
\[
\det(8I - M) = (-1)(1)(-3)(8) = (-1 \times 1 \times -3 \times 8) = 24.
\]
Then,
\[
\det((8I - M)^3) = (24)^3 = 13824.
\]
Final Answer: \[ \boxed{13824} \]
For the matrix, $A = \begin{bmatrix} -4 & 0 \\ -1.6 & 4 \end{bmatrix}$, the eigenvalues ($\lambda$) and eigenvectors ($X$) respectively are: