Step 1: Eigenvalue calculation.
We are given the matrix \(\begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}\) and the eigenvector \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\). The general equation for an eigenvalue is: \[ A \mathbf{v} = \lambda \mathbf{v} \] Where \(A\) is the matrix, \(\mathbf{v}\) is the eigenvector, and \(\lambda\) is the eigenvalue.
Step 2: Apply the matrix multiplication.
Multiplying the matrix \(\begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}\) by the eigenvector \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\), we get: \[ \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \times 1 + 2 \times 2 \\ 2 \times 1 + 4 \times 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 10 \end{bmatrix} \]
Step 3: Compare the result. \\ The result \(\begin{bmatrix} 8 \\ 10 \end{bmatrix}\) is a scalar multiple of the original eigenvector \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\). The scalar multiple is \(4\), which means the eigenvalue is \(4\).
Final Answer: \[ \boxed{4} \]
For the matrix, $A = \begin{bmatrix} -4 & 0 \\ -1.6 & 4 \end{bmatrix}$, the eigenvalues ($\lambda$) and eigenvectors ($X$) respectively are:
A weight of $500\,$N is held on a smooth plane inclined at $30^\circ$ to the horizontal by a force $P$ acting at $30^\circ$ to the inclined plane as shown. Then the value of force $P$ is:
A steel wire of $20$ mm diameter is bent into a circular shape of $10$ m radius. If modulus of elasticity of wire is $2\times10^{5}\ \text{N/mm}^2$, then the maximum bending stress induced in wire is: